scispace - formally typeset
Search or ask a question
Author

Jean-Michel Portal

Bio: Jean-Michel Portal is an academic researcher from Centre national de la recherche scientifique. The author has contributed to research in topics: Resistive random-access memory & Artificial neural network. The author has an hindex of 25, co-authored 136 publications receiving 2047 citations. Previous affiliations of Jean-Michel Portal include Alternatives & Aix-Marseille University.


Papers
More filters
Journal ArticleDOI
TL;DR: The authors devise an efficient test procedure for the interconnect structure and demonstrate its applicability to commercial FPGAs.
Abstract: Testing FPGAs before user programming can be an expensive procedure. Applying their general test configuration and test pattern generation methodology, the authors devise an efficient test procedure for the interconnect structure and demonstrate its applicability to commercial FPGAs.

170 citations

Journal ArticleDOI
TL;DR: In this article, a physics-based compact model used in electrical simulator for bipolar OxRAM memories is confronted to experimental electrical data and the excellent agreement with these data suggests that this model can be confidently implemented into circuit simulators for design purpose.
Abstract: Emerging nonvolatile memories based on resistive switching mechanisms pull intense research and development efforts from both academia and industry. Oxide-based resistive random access memories (OxRAM) gather noteworthy performances, such as fast WRITE/READ speed, low power, high endurance, and large integration density that outperform conventional flash memories. To fully explore new design concepts, such as distributed memory in logic or biomimetic architectures, robust OxRAM compact models must be developed and implemented into electrical simulators to assess performances at a circuit level. In this paper, we propose a physics-based compact model used in electrical simulator for bipolar OxRAM memories. After uncovering the theoretical background and the set of relevant physical parameters, this model is confronted to experimental electrical data. The excellent agreement with these data suggests that this model can be confidently implemented into circuit simulators for design purpose.

109 citations

Journal ArticleDOI
TL;DR: It is concluded that natural attenuation of PAHs in polluted river sediments under anaerobic conditions is exceedingly slow, and dredging and biodegradation on land under aerobic conditions would be required to safely remediate and restore polluted sites.

102 citations

Journal ArticleDOI
TL;DR: A theoretical investigation of synchronous NV logic gates based on RS memories (RS-NVL) is presented and special design techniques and strategies are proposed to optimize the structure according to different resistive characteristics of NVMs.
Abstract: Emerging non-volatile memories (NVM) based on resistive switching mechanism (RS) such as STT-MRAM, OxRRAM and CBRAM etc., are under intense R&D investigation by both academics and industries. They provide high write/read speed, low power and good endurance (e.g., > 1012) beyond mainstream NVMs, which allow them to be embedded directly with logic units for computing purpose. This integration could increase significantly the power/die area efficiency, and then overcome definitively the power/speed bottlenecks of modern VLSIs. This paper presents firstly a theoretical investigation of synchronous NV logic gates based on RS memories (RS-NVL). Special design techniques and strategies are proposed to optimize the structure according to different resistive characteristics of NVMs. To validate this study, we simulated a non-volatile full-adder (NVFA) with two types of NVMs: STT-MRAM and OxRRAM by using CMOS 40 nm design kit and compact models, which includes related physics and experimental parameters. They show interesting power, speed and area gain compared with synchronized CMOS FA while keeping good reliability.

98 citations

Journal ArticleDOI
TL;DR: Electrophoretic measurements and steady-state fluorescence spectroscopy with pyrene revealed that the interaction of Al(13) coagulant species with MHS functional groups induces the formation of intramolecular hydrophobic microenvironments.

81 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Most of the NOM can be removed by coagulation, although, the hydrophobic fraction and high molar mass compounds of NOM are removed more efficiently than hydrophilic fraction and the low molarmass compounds.

1,106 citations

Journal ArticleDOI
TL;DR: The review ends with the current status of RRAMs in terms of stability, scalability and switching speed, which are three important aspects of integration onto semiconductors.
Abstract: The resistance switching behaviour of several materials has recently attracted considerable attention for its application in non-volatile memory (NVM) devices, popularly described as resistive random access memories (RRAMs). RRAM is a type of NVM that uses a material(s) that changes the resistance when a voltage is applied. Resistive switching phenomena have been observed in many oxides: (i) binary transition metal oxides (TMOs), e.g. TiO(2), Cr(2)O(3), FeO(x) and NiO; (ii) perovskite-type complex TMOs that are variously functional, paraelectric, ferroelectric, multiferroic and magnetic, e.g. (Ba,Sr)TiO(3), Pb(Zr(x) Ti(1-x))O(3), BiFeO(3) and Pr(x)Ca(1-x)MnO(3); (iii) large band gap high-k dielectrics, e.g. Al(2)O(3) and Gd(2)O(3); (iv) graphene oxides. In the non-oxide category, higher chalcogenides are front runners, e.g. In(2)Se(3) and In(2)Te(3). Hence, the number of materials showing this technologically interesting behaviour for information storage is enormous. Resistive switching in these materials can form the basis for the next generation of NVM, i.e. RRAM, when current semiconductor memory technology reaches its limit in terms of density. RRAMs may be the high-density and low-cost NVMs of the future. A review on this topic is of importance to focus concentration on the most promising materials to accelerate application into the semiconductor industry. This review is a small effort to realize the ambitious goal of RRAMs. Its basic focus is on resistive switching in various materials with particular emphasis on binary TMOs. It also addresses the current understanding of resistive switching behaviour. Moreover, a brief comparison between RRAMs and memristors is included. The review ends with the current status of RRAMs in terms of stability, scalability and switching speed, which are three important aspects of integration onto semiconductors.

950 citations

Journal ArticleDOI
02 Jan 2017
TL;DR: The relevant virtues and limitations of these devices are assessed, in terms of properties such as conductance dynamic range, (non)linearity and (a)symmetry of conductance response, retention, endurance, required switching power, and device variability.
Abstract: Dense crossbar arrays of non-volatile memory (NVM) devices represent one possible path for implementing massively-parallel and highly energy-efficient neuromorphic computing systems. We first revie...

800 citations

Journal ArticleDOI
TL;DR: Emphasis will be placed on the use of bioaccumulation and biomarker responses in air, soil, water and food, as monitoring tools for the assessment of the risks and hazards of PAH concentrations for the ecosystem, as well as on its limitations.
Abstract: Polycyclic aromatic hydrocarbons (PAHs) are a large group of organic compounds with two or more fused aromatic rings. They have a relatively low solubility in water, but are highly lipophilic. Most of the PAHs with low vapour pressure in the air are adsorbed on particles. When dissolved in water or adsorbed on particulate matter, PAHs can undergo photodecomposition when exposed to ultraviolet light from solar radiation. In the atmosphere, PAHs can react with pollutants such as ozone, nitrogen oxides and sulfur dioxide, yielding diones, nitro- and dinitro-PAHs, and sulfonic acids, respectively. PAHs may also be degraded by some microorganisms in the soil. PAHs are widespread environmental contaminants resulting from incomplete combustion of organic materials. The occurrence is largely a result of anthropogenic emissions such as fossil fuel-burning, motor vehicle, waste incinerator, oil refining, coke and asphalt production, and aluminum production, etc. PAHs have received increased attention in recent years in air pollution studies because some of these compounds are highly carcinogenic or mutagenic. Eight PAHs (Car-PAHs) typically considered as possible carcinogens are: benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene (B(a)P), dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene and benzo(g,h,i)perylene. In particular, benzo(a)pyrene has been identified as being highly carcinogenic. The US Environmental Protection Agency (EPA) has promulgated 16 unsubstituted PAHs (EPA-PAH) as priority pollutants. Thus, exposure assessments of PAHs in the developing world are important. The scope of this review will be to give an overview of PAH concentrations in various environmental samples and to discuss the advantages and limitations of applying these parameters in the assessment of environmental risks in ecosystems and human health. As it well known, there is an increasing trend to use the behavior of pollutants (i.e. bioaccumulation) as well as pollution-induced biological and biochemical effects on human organisms to evaluate or predict the impact of chemicals on ecosystems. Emphasis in this review will, therefore, be placed on the use of bioaccumulation and biomarker responses in air, soil, water and food, as monitoring tools for the assessment of the risks and hazards of PAH concentrations for the ecosystem, as well as on its limitations.

798 citations