scispace - formally typeset
Search or ask a question
Author

Jean-Michel Portal

Bio: Jean-Michel Portal is an academic researcher from Centre national de la recherche scientifique. The author has contributed to research in topics: Resistive random-access memory & Artificial neural network. The author has an hindex of 25, co-authored 136 publications receiving 2047 citations. Previous affiliations of Jean-Michel Portal include Alternatives & Aix-Marseille University.


Papers
More filters
Proceedings ArticleDOI
25 Sep 2014
TL;DR: This paper describes different solutions to decrease dynamic consumption of circuits processed on an embedded non-volatile memories CMOS 80 nm technology and demonstrates up to 25 % in dynamic power reduction without degrading performances and static leakages of devices.
Abstract: This paper describes different solutions to decrease dynamic consumption of circuits processed on an embedded non-volatile memories CMOS 80 nm technology. Up to 25 % in dynamic power reduction is demonstrated without degrading performances and static leakages of devices and above all, with full DMR compliancy. Ring oscillator designs are used to estimate the dynamic power gain, comparing new development process (B) to reference process (A) currently in use in manufacturing.

8 citations

Journal ArticleDOI
TL;DR: Isoproturon transfer in the field by monitoring soil water sampled by porous cups or by drainage was studied in this paper, which revealed two types of water movement in soil: (l) slow movement to porous cups which allows interaction between herbicide and soil components, (2) fast flow down to drain without this possibility.

7 citations

Proceedings ArticleDOI
12 Dec 2020
TL;DR: In this paper, a 3D one transistor / one RRAM (1T1R) memory cube is proposed, which integrates HfO 2 -based OxRAM with select junctionless (JL) transistors based on lowvoltage Gate-All-Around (GAA) stacked NanoSheet (NS) technology.
Abstract: This paper explores a novel 3D one transistor / one RRAM (1T1R) memory cube. The proposed architecture integrates HfO 2 -based OxRAM with select junctionless (JL) transistors based on low-voltage Gate-All-Around (GAA) stacked NanoSheet (NS) technology. A bitcell size of 23.9×F2/N is achieved (‘N’ being the number of stacked-NS) as well as a very high write and read parallelism. Extensive characterization of JL transistors and OxRAMs is performed to show their ability to be co-integrated inside a same 1T1R memory cell. Electrical characterization of 4kbits OxRAM arrays shows a large memory window (HRS/LRS=20) up to 104 cycles with a current compliance of 150µA, compatible with the performances of our JL transistors. Then, we experimentally demonstrate scouting logic operations capability with 2 operands, which should be extended to 4 operands thanks to an original two cells/bit “double coding” scheme assessed by SPICE simulations. Finally, we evidenced that this computing scheme is 2 times more energy efficient than a write-verify approach.

7 citations

Proceedings ArticleDOI
17 May 2020
TL;DR: The performances of the 1S1R technology composed of an HfO2 OxRAM (1R) combined with a GeSeSbN based Ovonic Threshold Switch (1S) are presented.
Abstract: This paper presents an outlook of crosspoint memory arrays. We survey the characteristics, strengths and challenges of crosspoint array composed by a resistive memory device integrated in series with a back-end selector. We present the performances of our 1S1R technology composed of an HfO 2 OxRAM (1R) combined with a GeSeSbN based Ovonic Threshold Switch (1S). We benchmark our results with a detailed collection of experimental data reported in the literature.

7 citations

Journal ArticleDOI
TL;DR: This work investigates the use of Resistive Random Access Memory (RRAM) as an analog trimming device and a test structure consisting of a voltage reference is evaluated to validate the concept.
Abstract: This work investigates the use of Resistive Random Access Memory (RRAM) as an analog trimming device. The analog storage feature of the RRAM cell is evaluated and the ability of the RRAM to hold several resistance states is exploited to propose analog trim elements. To modulate the memory cell resistance, a series of short programming pulses are applied across the RRAM cell allowing a fine calibration of the RRAM resistance. The RRAM non volatility feature makes the analog device powers up already calibrated for the system in which the analog trimmed structure is embedded. To validate the concept, a test structure consisting of a voltage reference is evaluated.

7 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Most of the NOM can be removed by coagulation, although, the hydrophobic fraction and high molar mass compounds of NOM are removed more efficiently than hydrophilic fraction and the low molarmass compounds.

1,106 citations

Journal ArticleDOI
TL;DR: The review ends with the current status of RRAMs in terms of stability, scalability and switching speed, which are three important aspects of integration onto semiconductors.
Abstract: The resistance switching behaviour of several materials has recently attracted considerable attention for its application in non-volatile memory (NVM) devices, popularly described as resistive random access memories (RRAMs). RRAM is a type of NVM that uses a material(s) that changes the resistance when a voltage is applied. Resistive switching phenomena have been observed in many oxides: (i) binary transition metal oxides (TMOs), e.g. TiO(2), Cr(2)O(3), FeO(x) and NiO; (ii) perovskite-type complex TMOs that are variously functional, paraelectric, ferroelectric, multiferroic and magnetic, e.g. (Ba,Sr)TiO(3), Pb(Zr(x) Ti(1-x))O(3), BiFeO(3) and Pr(x)Ca(1-x)MnO(3); (iii) large band gap high-k dielectrics, e.g. Al(2)O(3) and Gd(2)O(3); (iv) graphene oxides. In the non-oxide category, higher chalcogenides are front runners, e.g. In(2)Se(3) and In(2)Te(3). Hence, the number of materials showing this technologically interesting behaviour for information storage is enormous. Resistive switching in these materials can form the basis for the next generation of NVM, i.e. RRAM, when current semiconductor memory technology reaches its limit in terms of density. RRAMs may be the high-density and low-cost NVMs of the future. A review on this topic is of importance to focus concentration on the most promising materials to accelerate application into the semiconductor industry. This review is a small effort to realize the ambitious goal of RRAMs. Its basic focus is on resistive switching in various materials with particular emphasis on binary TMOs. It also addresses the current understanding of resistive switching behaviour. Moreover, a brief comparison between RRAMs and memristors is included. The review ends with the current status of RRAMs in terms of stability, scalability and switching speed, which are three important aspects of integration onto semiconductors.

950 citations

Journal ArticleDOI
02 Jan 2017
TL;DR: The relevant virtues and limitations of these devices are assessed, in terms of properties such as conductance dynamic range, (non)linearity and (a)symmetry of conductance response, retention, endurance, required switching power, and device variability.
Abstract: Dense crossbar arrays of non-volatile memory (NVM) devices represent one possible path for implementing massively-parallel and highly energy-efficient neuromorphic computing systems. We first revie...

800 citations

Journal ArticleDOI
TL;DR: Emphasis will be placed on the use of bioaccumulation and biomarker responses in air, soil, water and food, as monitoring tools for the assessment of the risks and hazards of PAH concentrations for the ecosystem, as well as on its limitations.
Abstract: Polycyclic aromatic hydrocarbons (PAHs) are a large group of organic compounds with two or more fused aromatic rings. They have a relatively low solubility in water, but are highly lipophilic. Most of the PAHs with low vapour pressure in the air are adsorbed on particles. When dissolved in water or adsorbed on particulate matter, PAHs can undergo photodecomposition when exposed to ultraviolet light from solar radiation. In the atmosphere, PAHs can react with pollutants such as ozone, nitrogen oxides and sulfur dioxide, yielding diones, nitro- and dinitro-PAHs, and sulfonic acids, respectively. PAHs may also be degraded by some microorganisms in the soil. PAHs are widespread environmental contaminants resulting from incomplete combustion of organic materials. The occurrence is largely a result of anthropogenic emissions such as fossil fuel-burning, motor vehicle, waste incinerator, oil refining, coke and asphalt production, and aluminum production, etc. PAHs have received increased attention in recent years in air pollution studies because some of these compounds are highly carcinogenic or mutagenic. Eight PAHs (Car-PAHs) typically considered as possible carcinogens are: benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene (B(a)P), dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene and benzo(g,h,i)perylene. In particular, benzo(a)pyrene has been identified as being highly carcinogenic. The US Environmental Protection Agency (EPA) has promulgated 16 unsubstituted PAHs (EPA-PAH) as priority pollutants. Thus, exposure assessments of PAHs in the developing world are important. The scope of this review will be to give an overview of PAH concentrations in various environmental samples and to discuss the advantages and limitations of applying these parameters in the assessment of environmental risks in ecosystems and human health. As it well known, there is an increasing trend to use the behavior of pollutants (i.e. bioaccumulation) as well as pollution-induced biological and biochemical effects on human organisms to evaluate or predict the impact of chemicals on ecosystems. Emphasis in this review will, therefore, be placed on the use of bioaccumulation and biomarker responses in air, soil, water and food, as monitoring tools for the assessment of the risks and hazards of PAH concentrations for the ecosystem, as well as on its limitations.

798 citations