scispace - formally typeset
Search or ask a question
Author

Jean-Michel Portal

Bio: Jean-Michel Portal is an academic researcher from Centre national de la recherche scientifique. The author has contributed to research in topics: Resistive random-access memory & Artificial neural network. The author has an hindex of 25, co-authored 136 publications receiving 2047 citations. Previous affiliations of Jean-Michel Portal include Alternatives & Aix-Marseille University.


Papers
More filters
Proceedings ArticleDOI
04 Jul 2012
TL;DR: This paper proposes to integrate non-volatile resistive memories in configuration cells in order to instantly restore the FPGA context and shows that if the circuit is in `ON' state for less than 42% of time, non-Volatile FPGa starts saving energy compared to classical FPGAs.
Abstract: "Normally off, instantly on" applications are becoming common in our environment. They range from healthcare to video surveillance. As the number of applications and their associated performance requirements grow rapidly, more and more powerful, flexible and power efficient computing units are necessary. In such a context, Field Programmable Gate Arrays (FPGA) architectures present a good trade-off between performance and flexibility. However, they consume high static power and can hardly be associated with power gating techniques due to their long context restoring phase. In this paper, we propose to integrate non-volatile resistive memories in configuration cells in order to instantly restore the FPGA context. We then show that if the circuit is in 'ON' state for less than 42% of time, non-volatile FPGA starts saving energy compared to classical FPGA. Finally, for a typical application with only 1% of time spent in 'ON' state, the energy gain reaches 50%.

55 citations

Journal ArticleDOI
TL;DR: In this article, the degradation of 14C-ring-labeled isoproturon was investigated over 120 days under controlled laboratory conditions in three soils of eastern France chosen for their pH: a pelosol, a brown calcareous soil and a brown acid soil.

54 citations

Proceedings ArticleDOI
M. Renovell, P. Faure, Jean-Michel Portal, J. Figueras1, Yervant Zorian 
30 Oct 2001
TL;DR: It is demonstrated that the implicit-scan concept allows 'over-scan' of sequential circuits resulting in highly testable circuits and is transparent for the user as well as for the FPGA mapping tools.
Abstract: Proposes a new and original FPGA architecture with testability facilities. It is first demonstrated that classical FPGA architectures do not allow one to efficiently implement sequential circuits with a scan chain. It is consequently proposed to modify the architecture of classical FPGAs in order to create an implicit-scan chain into the FPGA itself called implicit scan FPGA (IS-FPGA). Using this new FPGA architecture, any sequential circuit implemented into the FPGA is 'implicitly scanned'. An original and optimal implementation of the proposed architecture is given with minimum area overhead and absolutely no delay impact. Additionally the technique is transparent for the user as well as for the FPGA mapping tools. Finally, it is demonstrated that the implicit-scan concept allows 'over-scan' of sequential circuits resulting in highly testable circuits.

52 citations

Proceedings ArticleDOI
10 May 2009
TL;DR: In this article, a gate-induced drain leakage (GIDL) current was used for write operation on FDSOI substrate, 9.5 nm silicon film and 19 nm BOX.
Abstract: A Capacitorless IT-DRAM cell using gate-induced drain leakage (GIDL) current for write operation was demonstrated for the first time on FDSOI substrate, 9.5 nm silicon film and 19 nm BOX. 20 nm gate scaling improves 20% memory effect amplitude. GIDL mechanism allows low bias, low power, fast write time and does not affect intrinsic retention time. A similar value of 10 ms at 85degC is obtained like for impact ionization (II) optimised devices.

48 citations

Proceedings ArticleDOI
18 Oct 1998
TL;DR: This paper addresses the problem of testing the LUT/RAM modules of configurable SRAM-based FPGAs using a minimum number of test configurations using the concept of non-redundant test that proposes to test in LUT mode the parts of the module not tested in RAM mode.
Abstract: This paper addresses the problem of testing the LUT/RAM modules of configurable SRAM-based FPGAs using a minimum number of test configurations. A model of architecture for the LUT/RAM module with N inputs and 2/sup N/ memory cells is proposed taking into account the LUT and RAM modes. Concerning the RAM mode, we demonstrate that a unique test configuration is required for a single module. The problem is shown equivalent to the test of a classical SRAM circuit allowing to use existing algorithms such as the march tests. We also propose a unique test configuration called 'pseudo shift register' for mxm arrays of modules. In this configuration, the circuit operates as a shift register and an adapted version of the MATS++ algorithm called 'shifted MATS++' is described. Concerning the LUT mode, we use the concept of non-redundant test that proposes to test in LUT mode the parts of the module not tested in RAM mode. Under this hypothesis, it is demonstrated that the test of a single module as well as the test of an mxm array of modules require only 3 test configurations. Using our solution, the test of a complete array of mxm LUT/RAM modules requires 4 test configurations independently of the size of the array and of the modules.

47 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Most of the NOM can be removed by coagulation, although, the hydrophobic fraction and high molar mass compounds of NOM are removed more efficiently than hydrophilic fraction and the low molarmass compounds.

1,106 citations

Journal ArticleDOI
TL;DR: The review ends with the current status of RRAMs in terms of stability, scalability and switching speed, which are three important aspects of integration onto semiconductors.
Abstract: The resistance switching behaviour of several materials has recently attracted considerable attention for its application in non-volatile memory (NVM) devices, popularly described as resistive random access memories (RRAMs). RRAM is a type of NVM that uses a material(s) that changes the resistance when a voltage is applied. Resistive switching phenomena have been observed in many oxides: (i) binary transition metal oxides (TMOs), e.g. TiO(2), Cr(2)O(3), FeO(x) and NiO; (ii) perovskite-type complex TMOs that are variously functional, paraelectric, ferroelectric, multiferroic and magnetic, e.g. (Ba,Sr)TiO(3), Pb(Zr(x) Ti(1-x))O(3), BiFeO(3) and Pr(x)Ca(1-x)MnO(3); (iii) large band gap high-k dielectrics, e.g. Al(2)O(3) and Gd(2)O(3); (iv) graphene oxides. In the non-oxide category, higher chalcogenides are front runners, e.g. In(2)Se(3) and In(2)Te(3). Hence, the number of materials showing this technologically interesting behaviour for information storage is enormous. Resistive switching in these materials can form the basis for the next generation of NVM, i.e. RRAM, when current semiconductor memory technology reaches its limit in terms of density. RRAMs may be the high-density and low-cost NVMs of the future. A review on this topic is of importance to focus concentration on the most promising materials to accelerate application into the semiconductor industry. This review is a small effort to realize the ambitious goal of RRAMs. Its basic focus is on resistive switching in various materials with particular emphasis on binary TMOs. It also addresses the current understanding of resistive switching behaviour. Moreover, a brief comparison between RRAMs and memristors is included. The review ends with the current status of RRAMs in terms of stability, scalability and switching speed, which are three important aspects of integration onto semiconductors.

950 citations

Journal ArticleDOI
02 Jan 2017
TL;DR: The relevant virtues and limitations of these devices are assessed, in terms of properties such as conductance dynamic range, (non)linearity and (a)symmetry of conductance response, retention, endurance, required switching power, and device variability.
Abstract: Dense crossbar arrays of non-volatile memory (NVM) devices represent one possible path for implementing massively-parallel and highly energy-efficient neuromorphic computing systems. We first revie...

800 citations

Journal ArticleDOI
TL;DR: Emphasis will be placed on the use of bioaccumulation and biomarker responses in air, soil, water and food, as monitoring tools for the assessment of the risks and hazards of PAH concentrations for the ecosystem, as well as on its limitations.
Abstract: Polycyclic aromatic hydrocarbons (PAHs) are a large group of organic compounds with two or more fused aromatic rings. They have a relatively low solubility in water, but are highly lipophilic. Most of the PAHs with low vapour pressure in the air are adsorbed on particles. When dissolved in water or adsorbed on particulate matter, PAHs can undergo photodecomposition when exposed to ultraviolet light from solar radiation. In the atmosphere, PAHs can react with pollutants such as ozone, nitrogen oxides and sulfur dioxide, yielding diones, nitro- and dinitro-PAHs, and sulfonic acids, respectively. PAHs may also be degraded by some microorganisms in the soil. PAHs are widespread environmental contaminants resulting from incomplete combustion of organic materials. The occurrence is largely a result of anthropogenic emissions such as fossil fuel-burning, motor vehicle, waste incinerator, oil refining, coke and asphalt production, and aluminum production, etc. PAHs have received increased attention in recent years in air pollution studies because some of these compounds are highly carcinogenic or mutagenic. Eight PAHs (Car-PAHs) typically considered as possible carcinogens are: benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene (B(a)P), dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene and benzo(g,h,i)perylene. In particular, benzo(a)pyrene has been identified as being highly carcinogenic. The US Environmental Protection Agency (EPA) has promulgated 16 unsubstituted PAHs (EPA-PAH) as priority pollutants. Thus, exposure assessments of PAHs in the developing world are important. The scope of this review will be to give an overview of PAH concentrations in various environmental samples and to discuss the advantages and limitations of applying these parameters in the assessment of environmental risks in ecosystems and human health. As it well known, there is an increasing trend to use the behavior of pollutants (i.e. bioaccumulation) as well as pollution-induced biological and biochemical effects on human organisms to evaluate or predict the impact of chemicals on ecosystems. Emphasis in this review will, therefore, be placed on the use of bioaccumulation and biomarker responses in air, soil, water and food, as monitoring tools for the assessment of the risks and hazards of PAH concentrations for the ecosystem, as well as on its limitations.

798 citations