scispace - formally typeset
Search or ask a question
Author

Jean-Philippe Martin

Bio: Jean-Philippe Martin is an academic researcher from University of Lorraine. The author has contributed to research in topics: Boost converter & Converters. The author has an hindex of 26, co-authored 100 publications receiving 2267 citations. Previous affiliations of Jean-Philippe Martin include Green University of Bangladesh & Nancy-Université.


Papers
More filters
Journal ArticleDOI
TL;DR: The main property of this strategy is that the energy management in the power source is carried out with a single general control algorithm in different operating modes, consequently avoiding any algorithm commutation.
Abstract: This paper presents an energy management method in an electrical hybrid power source (EHPS) for electric vehicular applications. The method is based on the flatness control technique (FCT) and fuzzy logic control (FLC). This EHPS is composed of a fuel cell system as the main source and two energy storage sources (ESSs)-a bank of supercapacitors (SCs) and a bank of batteries (BATs)-as the auxiliary source. With this hybridization, the volume and mass of the EHPS can be reduced, because the high energy density of BAT and high power density of SC are utilized. In the proposed novel control strategy, the FCT is used to manage the energy between the main and the auxiliary sources, and the FLC is employed to share the power flow in the ESS between the SC and the BAT. The power sharing depends on the load power and the state of charge of the SC and the BAT. EHPS is controlled by the regulation of the stored electrostatic energy in the dc buses. The main property of this strategy is that the energy management in the power source is carried out with a single general control algorithm in different operating modes, consequently avoiding any algorithm commutation. An EHPS test bench has been assembled and equipped with a real-time system controller based on a dSPACE. The experimental results validate the efficiency of the proposed control strategy.

360 citations

Journal ArticleDOI
TL;DR: The real-time constrained optimization problem is solved by using the particle swarm optimization method, which needs the knowledge of the actual current versus voltage curve of each PV generator to determine the best operating point of the system as a whole.
Abstract: Photovoltaic (PV) systems are one of the main actors in distributed power generation. In particular, in urban contexts, the PV generators can be subjected to mismatching phenomena due to the different orientation of the modules with respect to the sun rays or due to shadowing. In these cases, the maximum power point tracking (MPPT) function must be designed carefully. In this paper, architecture, including one dc/dc converter for each PV generator, is considered. The converters' output terminals are series connected to a high-voltage dc bus, where also a bidirectional dc/dc converter managing the power from/to a storage device is plugged. The functional constraints deriving from the dc/dc converters' connection, the mismatching phenomena, the MPPT capabilities of the inverter, connected with its input terminals at the dc bus, are taken into account in order to determine the best operating point of the system as a whole. The real-time constrained optimization problem is solved by using the particle swarm optimization method, which needs the knowledge of the actual current versus voltage curve of each PV generator. The practical impact of this need is also discussed in the paper. The feasibility and the performances of the proposed approach are experimentally validated by using a laboratory prototype.

269 citations

Journal ArticleDOI
TL;DR: Nonisolated dc-dc converter with high voltage ratio is proposed to interface between the FC and high-voltage dc bus and control of the whole system is realized by energy trajectory planning based on flatness properties of the system.
Abstract: Employing fuel cell (FC) as main source requires increasing and regulating its output voltage. In this paper, nonisolated dc-dc converter with high voltage ratio is proposed to interface between the FC and high-voltage dc bus. To take into account the low-voltage-high-density characteristics of power sources, a cascaded structure composed of two subconverters in cascade has been chosen and allows obtaining high voltage ratio. The choice of each subconverter is based on source requirements and its performances. Consequently, in this paper, a converter consisting of two-interleaved boost converter is chosen as first subconverter and a three-level boost converter is chosen as second subconverter. Control of the whole system is realized by energy trajectory planning based on flatness properties of the system. The design of trajectories is explained and allows respecting the fuel-cell constraints as main power source. To ensure correct design of the energy trajectories, a noninteger power-law function is used to model the static characteristic of the FC. This law allows investigating the effect of humidity and temperature on the dynamics of the proposed system. The control of both current and voltage balance across the output serial capacitors of the three-level boost converter is ensured by nonlinear controllers based on a new nonlinear model.

147 citations

Journal ArticleDOI
TL;DR: This paper presents the utilization of an ES device consisting of a supercapacitor bank for future electric vehicles with a hydrogen fuel cell (FC) as the main power source and proposes simple solutions to the hybrid energy-management and stabilization problems.
Abstract: Fuel-cell vehicles (FCVs) with energy storage (ES) device(s) could result in improved lifetime, performance, fuel economy, and reduced cost. This paper presents the utilization of an ES device consisting of a supercapacitor bank for future electric vehicles with a hydrogen fuel cell (FC) as the main power source. The study mainly focuses on the innovative control law based on the flatness properties for a FC/supercapacitor hybrid power source. Utilizing the flatness principle, we propose simple solutions to the hybrid energy-management and stabilization problems. A supercapacitor module, as a high dynamic and high-power density device, functions to supply energy to regulate the dc-bus energy. The FC, as a slower dynamic source in this system, functions by supplying energy to keep the supercapacitor module charged. To ensure energy-efficient operation of the FC stack, the output current ripple of the FC stack is minimized by parallel boost converters with an interleaving switching technique for a high-frequency ripple by the supercapacitor for a low-frequency ripple. To authenticate the proposed control laws, a test bench is realized in the laboratory. The control algorithm (energy and current control loops) is digitally implemented by dSPACE controller DS1103. Experimental results with small-scale devices (a proton exchange membrane FC (PEMFC) of 500 W, 50 A, and 10 V and a supercapacitor bank of 250 F, 32 V, and 500 A) substantiate the excellent performance during load cycles.

139 citations

Journal ArticleDOI
TL;DR: A new control method based on differential flatness control technique is presented, with the possibility to define the behavior of the state variable system in the steady state as well as in transients, and high dynamic properties of the system are obtained.
Abstract: Recently, hybrid electrical power sources composed of storage elements and renewable energy sources are known to have made great development. These energy sources are connected to a dc bus and need a dc-to-ac converter to transfer the produced energy to the grid. Three-leg voltage source inverters equipped with an output LC filter are often used. The main objective of this stage is to generate a three-phase sinusoidal voltage with defined amplitude and to ensure the smallest harmonic distortion rate of the output voltage for any load conditions. To satisfy the defined objectives, we present in this paper a new control method based on differential flatness control technique. The main interest of this control method is the possibility to define the behavior of the state variable system in the steady state as well as in transients. The use of only one control loop allows obtaining high dynamic properties of the system which ensure small harmonic distortion rate of the output voltage. Experimental results under balanced, unbalanced, and nonlinear load conditions are presented and validate the effectiveness of the proposed control methods.

82 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An attempt is made to provide a brief review of the current state of the art in the area of variable-speed drives, addressing the reasons for potential use of multiphase rather than three-phase drives and the available approaches to multiphases machine designs.
Abstract: Although the concept of variable-speed drives, based on utilization of multiphase machines, dates back to the late 1960s, it was not until the mid- to late 1990s that multiphase drives became serious contenders for various applications. These include electric ship propulsion, locomotive traction, electric and hybrid electric vehicles, ldquomore-electricrdquo aircraft, and high-power industrial applications. As a consequence, there has been a substantial increase in the interest for such drive systems worldwide, resulting in a huge volume of work published during the last ten years. An attempt is made in this paper to provide a brief review of the current state of the art in the area. After addressing the reasons for potential use of multiphase rather than three-phase drives and the available approaches to multiphase machine designs, various control schemes are surveyed. This is followed by a discussion of the multiphase voltage source inverter control. Various possibilities for the use of additional degrees of freedom that exist in multiphase machines are further elaborated. Finally, multiphase machine applications in electric energy generation are addressed.

1,683 citations

Journal ArticleDOI
TL;DR: In this paper, the dual-active-bridge (DAB) isolated bidirectional dc-dc converter (IBDC) serves as the core circuit of high frequency-link (HFL) power conversion systems.
Abstract: High-frequency-link (HFL) power conversion systems (PCSs) are attracting more and more attentions in academia and industry for high power density, reduced weight, and low noise without compromising efficiency, cost, and reliability. In HFL PCSs, dual-active-bridge (DAB) isolated bidirectional dc-dc converter (IBDC) serves as the core circuit. This paper gives an overview of DAB-IBDC for HFL PCSs. First, the research necessity and development history are introduced. Second, the research subjects about basic characterization, control strategy, soft-switching solution and variant, as well as hardware design and optimization are reviewed and analyzed. On this basis, several typical application schemes of DAB-IBDC for HPL PCSs are presented in a worldwide scope. Finally, design recommendations and future trends are presented. As the core circuit of HFL PCSs, DAB-IBDC has wide prospects. The large-scale practical application of DAB-IBDC for HFL PCSs is expected with the recent advances in solid-state semiconductors, magnetic and capacitive materials, and microelectronic technologies.

1,306 citations

Journal ArticleDOI
TL;DR: In this paper, the authors comprehensively review and classify various step-up dc-dc converters based on their characteristics and voltage-boosting techniques, and discuss the advantages and disadvantages of these voltage boosting techniques and associated converters.
Abstract: DC–DC converters with voltage boost capability are widely used in a large number of power conversion applications, from fraction-of-volt to tens of thousands of volts at power levels from milliwatts to megawatts. The literature has reported on various voltage-boosting techniques, in which fundamental energy storing elements (inductors and capacitors) and/or transformers in conjunction with switch(es) and diode(s) are utilized in the circuit. These techniques include switched capacitor (charge pump), voltage multiplier, switched inductor/voltage lift, magnetic coupling, and multistage/-level, and each has its own merits and demerits depending on application, in terms of cost, complexity, power density, reliability, and efficiency. To meet the growing demand for such applications, new power converter topologies that use the above voltage-boosting techniques, as well as some active and passive components, are continuously being proposed. The permutations and combinations of the various voltage-boosting techniques with additional components in a circuit allow for numerous new topologies and configurations, which are often confusing and difficult to follow. Therefore, to present a clear picture on the general law and framework of the development of next-generation step-up dc–dc converters, this paper aims to comprehensively review and classify various step-up dc–dc converters based on their characteristics and voltage-boosting techniques. In addition, the advantages and disadvantages of these voltage-boosting techniques and associated converters are discussed in detail. Finally, broad applications of dc–dc converters are presented and summarized with comparative study of different voltage-boosting techniques.

1,230 citations

Journal ArticleDOI
TL;DR: In this article, the state-of-the-art of the energy sources, storage devices, power converters, low-level control energy management strategies and high supervisor control algorithms used in electric vehicles are reviewed.
Abstract: The issues of global warming and depletion of fossil fuels have paved opportunities to electric vehicle (EV). Moreover, the rapid development of power electronics technologies has even realized high energy-efficient vehicles. EV could be the alternative to decrease the global green house gases emission as the energy consumption in the world transportation is high. However, EV faces huge challenges in battery cost since one-third of the EV cost lies on battery. This paper reviews state-of-the-art of the energy sources, storage devices, power converters, low-level control energy management strategies and high supervisor control algorithms used in EV. The comparison on advantages and disadvantages of vehicle technology is highlighted. In addition, the standards and patterns of drive cycles for EV are also outlined. The advancement of power electronics and power processors has enabled sophisticated controls (low-level and high supervisory algorithms) to be implemented in EV to achieve optimum performance as well as the realization of fast-charging stations. The rapid growth of EV has led to the integration of alternative resources to the utility grid and hence smart grid control plays an important role in managing the demand. The awareness of environmental issue and fuel crisis has brought up the sales of EV worldwide.

1,077 citations

Journal ArticleDOI
TL;DR: This paper presents an overview of power management strategies for a hybrid ac/dc microgrid system, which includes different system structures, different operation modes, a thorough study of various power management and control schemes in both steady state and transient conditions, and examples of powermanagement and control strategies.
Abstract: Today, conventional power systems are evolving to modern smart grids, where interconnected microgrids may dominate the distribution system with high penetration of renewable energy and energy storage systems. The hybrid ac/dc systems with dc and ac sources/loads are considered to be the most possible future distribution or even transmission structures. For such hybrid ac/dc microgrids, power management strategies are one of the most critical operation aspects. This paper presents an overview of power management strategies for a hybrid ac/dc microgrid system, which includes different system structures (ac-coupled, dc-coupled, and ac–dc-coupled hybrid microgrids), different operation modes, a thorough study of various power management and control schemes in both steady state and transient conditions, and examples of power management and control strategies. Finally, discussion and recommendations of power management strategies for the further research are presented.

707 citations