scispace - formally typeset
Search or ask a question
Author

Jean Pierre Boon

Bio: Jean Pierre Boon is an academic researcher. The author has contributed to research in topics: Bhatnagar–Gross–Krook operator & Lattice gas automaton. The author has an hindex of 1, co-authored 1 publications receiving 3793 citations.

Papers
More filters

Cited by
More filters
Journal ArticleDOI
TL;DR: This work reviews many significant developments over the past decade of the lattice-Boltzmann method and discusses higherorder boundary conditions and the simulation of microchannel flow with finite Knudsen number.
Abstract: With its roots in kinetic theory and the cellular automaton concept, the lattice-Boltzmann (LB) equation can be used to obtain continuum flow quantities from simple and local update rules based on particle interactions. The simplicity of formulation and its versatility explain the rapid expansion of the LB method to applications in complex and multiscale flows. We review many significant developments over the past decade with specific examples. Some of the most active developments include the entropic LB method and the application of the LB method to turbulent flow, multiphase flow, and deformable particle and fiber suspensions. Hybrid methods based on the combination of the Eulerian lattice with a Lagrangian grid system for the simulation of moving deformable boundaries show promise for more efficient applications to a broader class of problems. We also discuss higherorder boundary conditions and the simulation of microchannel flow with finite Knudsen number. Additionally, the remarkable scalability of the LB method for parallel processing is shown with examples. Teraflop simulations with the LB method are routine, and there is no doubt that this method will be one of the first candidates for petaflop computational fluid dynamics in the near future.

1,585 citations

Journal ArticleDOI
TL;DR: A review of the fundamental and technological aspects of these subjects can be found in this article, where the focus is mainly on surface tension effects, which result from the cohesive properties of liquids Paradoxically, cohesive forces promote the breakup of jets, widely encountered in nature, technology and basic science.
Abstract: Jets, ie collimated streams of matter, occur from the microscale up to the large-scale structure of the universe Our focus will be mostly on surface tension effects, which result from the cohesive properties of liquids Paradoxically, cohesive forces promote the breakup of jets, widely encountered in nature, technology and basic science, for example in nuclear fission, DNA sampling, medical diagnostics, sprays, agricultural irrigation and jet engine technology Liquid jets thus serve as a paradigm for free-surface motion, hydrodynamic instability and singularity formation leading to drop breakup In addition to their practical usefulness, jets are an ideal probe for liquid properties, such as surface tension, viscosity or non-Newtonian rheology They also arise from the last but one topology change of liquid masses bursting into sprays Jet dynamics are sensitive to the turbulent or thermal excitation of the fluid, as well as to the surrounding gas or fluid medium The aim of this review is to provide a unified description of the fundamental and the technological aspects of these subjects

1,583 citations

Journal ArticleDOI
TL;DR: In this paper, the lattice Boltzmann equation (LBE) is applied to high Reynolds number incompressible flows, some critical issues need to be addressed, noticeably flexible spatial resolution, boundary treatments for curved solid wall, dispersion and mode of relaxation, and turbulence model.

861 citations

Journal ArticleDOI
TL;DR: In this article, the incorporation of various equations of state into the single-component multiphase lattice Boltzmann model is considered, including the van der Waals, Redlich-Kwong, and Peng-Robinson, as well as a noncubic equation of state (Carnahan-Starling), and the details of phase separation in these nonideal single component systems are presented.
Abstract: In this paper we consider the incorporation of various equations of state into the single-component multiphase lattice Boltzmann model. Several cubic equations of state, including the van der Waals, Redlich-Kwong, and Peng-Robinson, as well as a noncubic equation of state (Carnahan-Starling), are incorporated into the lattice Boltzmann model. The details of phase separation in these nonideal single-component systems are presented by comparing the numerical simulation results in terms of density ratios, spurious currents, and temperature ranges. A comparison with a real fluid system, i.e., the properties of saturated water and steam, is also presented.

738 citations

Journal ArticleDOI
TL;DR: In this article, extensive lattice Boltzmann simulations were performed to obtain the drag force for random arrays of monodisperse and bidisperse spheres, and a new drag law was suggested for general polydisperse systems.
Abstract: Extensive lattice-Boltzmann simulations were performed to obtain the drag force for random arrays of monodisperse and bidisperse spheres. For the monodisperse systems, 35 different combinations of the Reynolds number Re (up to Re = 1,000) and packing fraction were studied, whereas for the bidisperse systems we also varied the diameter ratio (from 1:1.5 to 1:4) and composition, which brings the total number of different systems that we considered to 150. For monodisperse systems, the data was found to be markedly different from the Ergun equation and consistent with a correlation, based on similar type of simulations up to Re = 120. For bidisperse systems, it was found that the correction of the monodisperse drag force for bidispersity, which was derived for the limit Re = 0, also applies for higher-Reynolds numbers. On the basis of the data, a new drag law is suggested for general polydisperse systems, which is on average within 10% of the simulation data for Reynolds numbers up to 1,000, and diameter ratios up to 1:4

696 citations