scispace - formally typeset
Search or ask a question
Author

Jean-Pierre Bouchard

Bio: Jean-Pierre Bouchard is an academic researcher from Laval University. The author has contributed to research in topics: Medicine & Population. The author has an hindex of 46, co-authored 130 publications receiving 10491 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Findings further corroborate that TDP-43 is involved in ALS pathogenesis and reports eight missense mutations in nine individuals—six from individuals with sporadic ALS and three from those with familial ALS (FALS)—and a concurring increase of a smaller T DP-43 product.
Abstract: Recently, TDP-43 was identified as a key component of ubiquitinated aggregates in amyotrophic lateral sclerosis (ALS), an adult-onset neurological disorder that leads to the degeneration of motor neurons. Here we report eight missense mutations in nine individuals--six from individuals with sporadic ALS (SALS) and three from those with familial ALS (FALS)--and a concurring increase of a smaller TDP-43 product. These findings further corroborate that TDP-43 is involved in ALS pathogenesis.

1,453 citations

Journal Article
TL;DR: Lenercept failed to be beneficial, but insight into the role of TNF in MS exacerbations was gained.
Abstract: Objective: A double-blind, placebo-controlled phase II study was conducted in 168 patients, most with relapsing-remitting MS, to evaluate whether lenercept would reduce new lesions on MRI. Background: Tumor necrosis factor (TNF) has been implicated in MS pathogenesis, has been identified in active MS lesions, is toxic to oligodendrocytes in vitro, and worsens the severity of experimental allergic encephalomyelitis (EAE) in animals. Lenercept, a recombinant TNF receptor p55 immunoglobulin fusion protein (sTNFR-IgG p55), protects against EAE. Methods: Patients received 10, 50, or 100 mg of lenercept or placebo IV every 4 weeks for up to 48 weeks. MRI scans and clinical evaluations were performed at screening, at baseline, and then every 4 weeks (immediately before dosing) through study week 24. Results: There were no significant differences between groups on any MRI study measure, but the number of lenercept-treated patients experiencing exacerbations was significantly increased compared with patients receiving placebo ( p 0.007) and their exacerbations occurred earlier ( p 0.006). Neurologic deficits tended to be more severe in the lenercept treatment groups, although this did not affect Expanded Disability Status Scale scores. Anti-lenercept antibodies were present in a substantial number of treated patients; serum lenercept trough concentrations were detectable in only a third. Adverse events that increased in frequency in treated patients included headache, nausea, abdominal pain, and hot flushes. Conclusions: Lenercept failed to be beneficial, but insight into the role of TNF in MS exacerbations was gained.

806 citations

Journal ArticleDOI
TL;DR: Pathological expansions of the polyalanine tract may cause mutated PABP2 oligomers to accumulate as filament inclusions in nuclei to cause autosomal recessive OPMD.
Abstract: Autosomal dominant oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disease with a world-wide distribution. It usually presents in the sixth decade with progressive swallowing difficulties (dysphagia), eyelid drooping (ptosis) and proximal limb weakness. Unique nuclear filament inclusions in skeletal muscle fibres are its pathological hallmark. We isolated the poly(A) binding protein 2 gene (PABP2) from a 217-kb candidate interval on chromosome 14q11 (B.B. et al., manuscript submitted). A (GCG)6 repeat encoding a polyalanine tract located at the N terminus of the protein was expanded to (GCG)8-13 in the 144 OPMD families screened. More severe phenotypes were observed in compound heterozygotes for the (GCG)9 mutation and a (GCG)7 allele that is found in 2% of the population, whereas homozygosity for the (GCG)7 allele leads to autosomal recessive OPMD. Thus the (GCG)7 allele is an example of a polymorphism which can act either as a modifier of a dominant phenotype or as a recessive mutation. Pathological expansions of the polyalanine tract may cause mutated PABP2 oligomers to accumulate as filament inclusions in nuclei.

706 citations

Journal ArticleDOI
TL;DR: The results support genetic epidemiological evidence that several genes interact epistatically to determine heritable susceptibility in multiple sclerosis.
Abstract: The aetiology of multiple sclerosis (MS) is uncertain. There is strong circumstantial evidence to indicate it is an autoimmune complex trait. Risks for first degree relatives are increased some 20 fold over the general population. Twin studies have shown monozygotic concordance rates of 25-30% compared to 4% for dizygotic twins and siblings. Studies of adoptees and half sibs show that familial risk is determined by genes, but environmental factors strongly influence observed geographic differences. Studies of candidate genes have been largely unrewarding. We report a genome search using 257 microsatellite markers with average spacing of 15.2 cM in 100 sibling pairs (Table 1, data set 1 - DS1). A locus of lambda>3 was excluded from 88% of the genome. Five loci with maximum lod scores (MLS) of >1 were identified on chromosomes 2, 3, 5, 11 and X. Two additional data sets containing 44 (Table 1, DS2) and 78 sib pairs (Table 1, DS3) respectively, were used to further evaluate the HLA region on 6p21 and a locus on chromosome 5 with an MLS of 4.24. Markers within 6p21 gave MLS of 0.65 (non-significant, NS). However, D6S461, just outside the HLA region, showed significant evidence for linkage disequilibrium by the transmission disequilibrium test (TDT), in all three data sets (for DS1 chi2 = 10.8, adjusted P < 0.01)(DS2 and DS3 chi2 = 10.9, P < 0.0005), suggesting a modest susceptibility locus in this region. On chromosome 5p results from all three data sets (222 sib pairs) yielded a multipoint MLS of 1.6. The results support genetic epidemiological evidence that several genes interact epistatically to determine heritable susceptibility.

688 citations

Journal ArticleDOI
TL;DR: The cloning of this gene, SACS, which encodes the protein sacsin, which is the largest to be identified in any vertebrate organism is reported, and the presence of heat-shock domains suggests a function for sacsin in chaperone-mediated protein folding.
Abstract: Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS or SACS) is an early onset neurodegenerative disease with high prevalence (carrier frequency 1/22) in the Charlevoix-Saguenay-Lac-Saint-Jean (CSLSJ) region of Quebec. We previously mapped the gene responsible for ARSACS to chromosome 13q11 and identified two ancestral haplotypes. Here we report the cloning of this gene, SACS, which encodes the protein sacsin. The ORF of SACS is 11,487 bp and is encoded by a single gigantic exon spanning 12,794 bp. This exon is the largest to be identified in any vertebrate organism. The ORF is conserved in human and mouse. The putative protein contains three large segments with sequence similarity to each other and to the predicted protein of an Arabidopsis thaliana ORF. The presence of heat-shock domains suggests a function for sacsin in chaperone-mediated protein folding. SACS is expressed in a variety of tissues, including the central nervous system. We identified two SACSmutations in ARSACS families that lead to protein truncation, consistent with haplotype analysis.

382 citations


Cited by
More filters
Journal ArticleDOI
John W. Belmont1, Andrew Boudreau, Suzanne M. Leal1, Paul Hardenbol  +229 moreInstitutions (40)
27 Oct 2005
TL;DR: A public database of common variation in the human genome: more than one million single nucleotide polymorphisms for which accurate and complete genotypes have been obtained in 269 DNA samples from four populations, including ten 500-kilobase regions in which essentially all information about common DNA variation has been extracted.
Abstract: Inherited genetic variation has a critical but as yet largely uncharacterized role in human disease. Here we report a public database of common variation in the human genome: more than one million single nucleotide polymorphisms (SNPs) for which accurate and complete genotypes have been obtained in 269 DNA samples from four populations, including ten 500-kilobase regions in which essentially all information about common DNA variation has been extracted. These data document the generality of recombination hotspots, a block-like structure of linkage disequilibrium and low haplotype diversity, leading to substantial correlations of SNPs with many of their neighbours. We show how the HapMap resource can guide the design and analysis of genetic association studies, shed light on structural variation and recombination, and identify loci that may have been subject to natural selection during human evolution.

5,479 citations

Journal ArticleDOI
TL;DR: Transected axons are common in the lesions of multiple sclerosis, and axonal transection may be the pathologic correlate of the irreversible neurologic impairment in this disease.
Abstract: Background Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system and is the most common cause of neurologic disability in young adults. Despite antiinflammatory or immunosuppressive therapy, most patients have progressive neurologic deterioration that may reflect axonal loss. We conducted pathological studies of brain tissues to define the changes in axons in patients with multiple sclerosis. Methods Brain tissue was obtained at autopsy from 11 patients with multiple sclerosis and 4 subjects without brain disease. Fourteen active multiple-sclerosis lesions, 33 chronic active lesions, and samples of normal-appearing white matter were examined for demyelination, inflammation, and axonal pathologic changes by immunohistochemistry and confocal microscopy. Axonal transection, identified by the presence of terminal axonal ovoids, was detected in all 47 lesions and quantified in 18 lesions. Results Transected axons were a consistent feature of the lesions of multiple sclerosis...

3,903 citations

Journal ArticleDOI
TL;DR: At a given time point of the disease, the patterns of demyelination were heterogeneous between patients, but were homogenous within multiple active lesions from the same patient, suggesting that MS may be a disease with heterogeneous pathogenetic mechanisms.
Abstract: Multiple sclerosis (MS) is a disease with profound heterogeneity in clinical course, neuroradiological appearance of the lesions, involvement of susceptibility gene loci, and response to therapy. These features are supported by experimental evidence, which demonstrates that fundamentally different processes, such as autoimmunity or virus infection, may induce MS-like inflammatory demyelinating plaques and suggest that MS may be a disease with heterogeneous pathogenetic mechanisms. From a large pathology sample of MS, collected in three international centers, we selected 51 biopsies and 32 autopsies that contained actively demyelinating lesions defined by stringent criteria. The pathology of the lesions was analyzed using a broad spectrum of immunological and neurobiological markers. Four fundamentally different patterns of demyelination were found, defined on the basis of myelin protein loss, the geography and extension of plaques, the patterns of oligodendrocyte destruction, and the immunopathological evidence of complement activation. Two patterns (I and II) showed close similarities to T-cell‐mediated or T-cell plus antibody‐mediated autoimmune encephalomyelitis, respectively. The other patterns (III and IV) were highly suggestive of a primary oligodendrocyte dystrophy, reminiscent of virus- or toxin-induced demyelination rather than autoimmunity. At a given time point of the disease—as reflected in autopsy cases—the patterns of demyelination were heterogeneous between patients, but were homogenous within multiple active lesions from the same patient. This pathogenetic heterogeneity of plaques from different MS patients may have fundamental implications for the diagnosis and therapy of this disease.

3,162 citations

Journal ArticleDOI
01 Apr 1998-Brain
TL;DR: A constellation of deficits is suggestive of disruption of the Cerebellar modulation of neural circuits that link prefrontal, posterior parietal, superior temporal and limbic cortices with the cerebellum, called the 'cerebellar cognitive affective syndrome'.
Abstract: Anatomical, physiological and functional neuroimaging studies suggest that the cerebellum participates in the organization of higher order function, but there are very few descriptions of clinically relevant cases that address this possibility. We performed neurological examinations, bedside mental state tests, neuropsychological studies and anatomical neuroimaging on 20 patients with diseases confined to the cerebellum, and evaluated the nature and severity of the changes in neurological and mental function. Behavioural changes were clinically prominent in patients with lesions involving the posterior lobe of the cerebellum and the vermis, and in some cases they were the most noticeable aspects of the presentation. These changes were characterized by: impairment of executive functions such as planning, set-shifting, verbal fluency, abstract reasoning and working memory; difficulties with spatial cognition including visual-spatial organization and memory; personality change with blunting of affect or disinhibited and inappropriate behaviour; and language deficits including agrammatism and dysprosodia. Lesions of the anterior lobe of the cerebellum produced only minor changes in executive and visual-spatial functions. We have called this newly defined clinical entity the 'cerebellar cognitive affective syndrome'. The constellation of deficits is suggestive of disruption of the cerebellar modulation of neural circuits that link prefrontal, posterior parietal, superior temporal and limbic cortices with the cerebellum.

2,640 citations