scispace - formally typeset
Search or ask a question
Author

Jean-Pierre Gattuso

Bio: Jean-Pierre Gattuso is an academic researcher from University of Paris. The author has contributed to research in topics: Ocean acidification & Carbonate. The author has an hindex of 77, co-authored 272 publications receiving 23041 citations. Previous affiliations of Jean-Pierre Gattuso include University of Liège & École pratique des hautes études.


Papers
More filters
Journal ArticleDOI
TL;DR: The most comprehensive meta-analysis to date by synthesizing the results of 228 studies examining biological responses to ocean acidification reveals decreased survival, calcification, growth, development and abundance in response to acidification, and suggests that other factors, such as nutritional status or source population, could cause substantial variation in organisms' responses.
Abstract: Ocean acidification represents a threat to marine species worldwide, and forecasting the ecological impacts of acidification is a high priority for science, management, and policy. As research on the topic expands at an exponential rate, a comprehensive understanding of the variability in organisms' responses and corresponding levels of certainty is necessary to forecast the ecological effects. Here, we perform the most comprehensive meta-analysis to date by synthesizing the results of 228 studies examining biological responses to ocean acidification. The results reveal decreased survival, calcification, growth, development and abundance in response to acidification when the broad range of marine organisms is pooled together. However, the magnitude of these responses varies among taxonomic groups, suggesting there is some predictable trait-based variation in sensitivity, despite the investigation of approximately 100 new species in recent research. The results also reveal an enhanced sensitivity of mollusk larvae, but suggest that an enhanced sensitivity of early life history stages is not universal across all taxonomic groups. In addition, the variability in species' responses is enhanced when they are exposed to acidification in multi-species assemblages, suggesting that it is important to consider indirect effects and exercise caution when forecasting abundance patterns from single-species laboratory experiments. Furthermore, the results suggest that other factors, such as nutritional status or source population, could cause substantial variation in organisms' responses. Last, the results highlight a trend towards enhanced sensitivity to acidification when taxa are concurrently exposed to elevated seawater temperature.

1,787 citations

Journal ArticleDOI
02 Apr 1999-Science
TL;DR: A coral reef represents the net accumulation of calcium carbonate (CaCO3) produced by corals and other calcifying organisms, and if calcification declines, then reef-building capacity also declines.
Abstract: A coral reef represents the net accumulation of calcium carbonate (CaCO3) produced by corals and other calcifying organisms. If calcification declines, then reef-building capacity also declines. Coral reef calcification depends on the saturation state of the carbonate mineral aragonite of surface waters. By the middle of the next century, an increased concentration of carbon dioxide will decrease the aragonite saturation state in the tropics by 30 percent and biogenic aragonite precipitation by 14 to 30 percent. Coral reefs are particularly threatened, because reef-building organisms secrete metastable forms of CaCO3, but the biogeochemical consequences on other calcifying marine ecosystems may be equally severe.

1,329 citations

Journal ArticleDOI
03 Jul 2015-Science
TL;DR: The physics, chemistry, and ecology of the oceans might be affected based on two CO2 emission trajectories: one business as usual and one with aggressive reductions, consistent with the Copenhagen Accord of keeping mean global temperature increase below 2°C in the 21st century.
Abstract: The ocean moderates anthropogenic climate change at the cost of profound alterations of its physics, chemistry, ecology, and services. Here, we evaluate and compare the risks of impacts on marine and coastal ecosystems—and the goods and services they provide—for growing cumulative carbon emissions under two contrasting emissions scenarios. The current emissions trajectory would rapidly and significantly alter many ecosystems and the associated services on which humans heavily depend. A reduced emissions scenario—consistent with the Copenhagen Accord’s goal of a global temperature increase of less than 2°C—is much more favorable to the ocean but still substantially alters important marine ecosystems and associated goods and services. The management options to address ocean impacts narrow as the ocean warms and acidifies. Consequently, any new climate regime that fails to minimize ocean impacts would be incomplete and inadequate.

1,053 citations

Journal ArticleDOI
TL;DR: In this paper, the primary production, respiration, calcification, carbon burial and exchange with adjacent systems, including the atmosphere, are reviewed for the major coastal ecosystems (estuaries, macrophyte communities, mangroves, coral reefs, and the remaining continental shelf).
Abstract: The coastal zone is where land, ocean, and atmosphere interact. It exhibits a wide diversity of geomorphological types and ecosystems, each one displaying great variability in terms of physical and biogeochemical forcings. Despite its relatively modest surface area, the coastal zone plays a considerable role in the biogeochemical cycles because it receives massive inputs of terrestrial organic matter and nutrients, is among the most geochemically and biologically active areas of the biosphere, and exchanges large amounts of matter and energy with the open ocean. Coastal ecosystems have therefore attracted much attention recently and are the focus of several current national and international research programs (e.g. LOICZ, ELOISE). The primary production, respiration, calcification, carbon burial and exchange with adjacent systems, including the atmosphere, are reviewed for the major coastal ecosystems (estuaries, macrophyte communities, mangroves, coral reefs, and the remaining continental shelf ). All ecosystems

974 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the relationship between photosynthesis and calcification in coral reefs and the potential effect of global climatic changes (p CO2 and temperature) on the rate of calcification is presented.
Abstract: SYNOPSIS. Photosynthesis and calcification in zooxanthellate scleractinian corals and coral reefs are reviewed at several scales: cellular (pathways and transport mechanisms of inorganic carbon and calcium), organismal (interaction between photosynthesis and calcification, effect of light) and ecosystemic (community primary production and calcification, and air-sea CO2 exchanges). The coral host plays a major role in supplying carbon for the photosynthesis by the algal symbionts through a system similar to the carbon-concentrating mechanism described in free living algal cells. The details of carbon supply to the calcification process are almost unknown, but metabolic CO2 seems to be a significant source. Calcium supply for calcification is diffusional through oral layers, and active membrane transport only occurs between the calicoblastic cells and the site of calcification. Photosynthesis and calcification are tightly coupled in zooxanthellate scleractinian corals and coral reef communities. Calcification is, on average, three times higher in light than in darkness. The recent suggestion that calcification is dark-repressed rather than light-enhanced is not supported by the literature. There is a very strong correlation between photosynthesis and calcification at both the organism and community levels, but the ratios of calcification to gross photosynthesis (0.6 in corals and 0.2 in reef communities) differ from unity, and from each other as a function of level. The potential effect of global climatic changes ( p CO2 and temperature) on the rate of calcification is also reviewed. In various calcifying photosynthetic organisms and communities, the rate of calcification decreases as a function of increasing p CO2 and decreasing calcium carbonate saturation state. The calculated decrease in CaCO3, production, estimated using the scenarios considered by the International Panel on Climate Change (IPCC), is 10% between 1880 and 1990, and 9–30% (mid estimate: 22%) from 1990 to 2100. Inadequate understanding of the mechanism of calcification and its interaction with photosynthesis severely limits the ability to provide an accurate prediction of future changes in the rate of calcification.

775 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors proposed a new approach to global sustainability in which they define planetary boundaries within which they expect that humanity can operate safely. But the proposed concept of "planetary boundaries" lays the groundwork for shifting our approach to governance and management, away from the essentially sectoral analyses of limits to growth aimed at minimizing negative externalities, toward the estimation of the safe space for human development.
Abstract: Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustainability in which we define planetary boundaries within which we expect that humanity can operate safely. Transgressing one or more planetary boundaries may be deleterious or even catastrophic due to the risk of crossing thresholds that will trigger non-linear, abrupt environmental change within continental- to planetary-scale systems. We have identified nine planetary boundaries and, drawing upon current scientific understanding, we propose quantifications for seven of them. These seven are climate change (CO2 concentration in the atmosphere <350 ppm and/or a maximum change of +1 W m-2 in radiative forcing); ocean acidification (mean surface seawater saturation state with respect to aragonite ≥ 80% of pre-industrial levels); stratospheric ozone (<5% reduction in O3 concentration from pre-industrial level of 290 Dobson Units); biogeochemical nitrogen (N) cycle (limit industrial and agricultural fixation of N2 to 35 Tg N yr-1) and phosphorus (P) cycle (annual P inflow to oceans not to exceed 10 times the natural background weathering of P); global freshwater use (<4000 km3 yr-1 of consumptive use of runoff resources); land system change (<15% of the ice-free land surface under cropland); and the rate at which biological diversity is lost (annual rate of <10 extinctions per million species). The two additional planetary boundaries for which we have not yet been able to determine a boundary level are chemical pollution and atmospheric aerosol loading. We estimate that humanity has already transgressed three planetary boundaries: for climate change, rate of biodiversity loss, and changes to the global nitrogen cycle. Planetary boundaries are interdependent, because transgressing one may both shift the position of other boundaries or cause them to be transgressed. The social impacts of transgressing boundaries will be a function of the social-ecological resilience of the affected societies. Our proposed boundaries are rough, first estimates only, surrounded by large uncertainties and knowledge gaps. Filling these gaps will require major advancements in Earth System and resilience science. The proposed concept of "planetary boundaries" lays the groundwork for shifting our approach to governance and management, away from the essentially sectoral analyses of limits to growth aimed at minimizing negative externalities, toward the estimation of the safe space for human development. Planetary boundaries define, as it were, the boundaries of the "planetary playing field" for humanity if we want to be sure of avoiding major human-induced environmental change on a global scale.

4,771 citations

Journal ArticleDOI
29 Sep 2005-Nature
TL;DR: 13 models of the ocean–carbon cycle are used to assess calcium carbonate saturation under the IS92a ‘business-as-usual’ scenario for future emissions of anthropogenic carbon dioxide and indicate that conditions detrimental to high-latitude ecosystems could develop within decades, not centuries as suggested previously.
Abstract: Today's surface ocean is saturated with respect to calcium carbonate, but increasing atmospheric carbon dioxide concentrations are reducing ocean pH and carbonate ion concentrations, and thus the level of calcium carbonate saturation. Experimental evidence suggests that if these trends continue, key marine organisms—such as corals and some plankton—will have difficulty maintaining their external calcium carbonate skeletons. Here we use 13 models of the ocean–carbon cycle to assess calcium carbonate saturation under the IS92a 'business-as-usual' scenario for future emissions of anthropogenic carbon dioxide. In our projections, Southern Ocean surface waters will begin to become undersaturated with respect to aragonite, a metastable form of calcium carbonate, by the year 2050. By 2100, this undersaturation could extend throughout the entire Southern Ocean and into the subarctic Pacific Ocean. When live pteropods were exposed to our predicted level of undersaturation during a two-day shipboard experiment, their aragonite shells showed notable dissolution. Our findings indicate that conditions detrimental to high-latitude ecosystems could develop within decades, not centuries as suggested previously.

4,244 citations

Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations

Journal ArticleDOI
TL;DR: In this paper, the main ecological services across a variety of estuarine and coastal ecosystems (ECEs) including marshes, mangroves, nearshore coral reefs, seagrass beds, and sand beaches and dunes are reviewed.
Abstract: The global decline in estuarine and coastal ecosystems (ECEs) is affecting a number of critical benefits, or ecosystem services. We review the main ecological services across a variety of ECEs, including marshes, mangroves, nearshore coral reefs, seagrass beds, and sand beaches and dunes. Where possible, we indicate estimates of the key economic values arising from these services, and discuss how the natural variability of ECEs impacts their benefits, the synergistic relationships of ECEs across seascapes, and management implications. Although reliable valuation estimates are beginning to emerge for the key services of some ECEs, such as coral reefs, salt marshes, and mangroves, many of the important benefits of seagrass beds and sand dunes and beaches have not been assessed properly. Even for coral reefs, marshes, and mangroves, important ecological services have yet to be valued reliably, such as cross-ecosystem nutrient transfer (coral reefs), erosion control (marshes), and pollution control (mangroves). An important issue for valuing certain ECE services, such as coastal protection and habitat-fishery linkages, is that the ecological functions underlying these services vary spatially and temporally. Allowing for the connectivity between ECE habitats also may have important implications for assessing the ecological functions underlying key ecosystems services, such coastal protection, control of erosion, and habitat-fishery linkages. Finally, we conclude by suggesting an action plan for protecting and/or enhancing the immediate and longer-term values of ECE services. Because the connectivity of ECEs across land-sea gradients also influences the provision of certain ecosystem services, management of the entire seascape will be necessary to preserve such synergistic effects. Other key elements of an action plan include further ecological and economic collaborative research on valuing ECE services, improving institutional and legal frameworks for management, controlling and regulating destructive economic activities, and developing ecological restoration options.

3,750 citations

Journal ArticleDOI
15 Aug 2003-Science
TL;DR: International integration of management strategies that support reef resilience need to be vigorously implemented, and complemented by strong policy decisions to reduce the rate of global warming.
Abstract: The diversity, frequency, and scale of human impacts on coral reefs are increasing to the extent that reefs are threatened globally. Projected increases in carbon dioxide and temperature over the next 50 years exceed the conditions under which coral reefs have flourished over the past half-million years. However, reefs will change rather than disappear entirely, with some species already showing far greater tolerance to climate change and coral bleaching than others. International integration of management strategies that support reef resilience need to be vigorously implemented, and complemented by strong policy decisions to reduce the rate of global warming.

3,664 citations