scispace - formally typeset
Search or ask a question
Author

Jean Weissenbach

Bio: Jean Weissenbach is an academic researcher from Université Paris-Saclay. The author has contributed to research in topics: Genome & Locus (genetics). The author has an hindex of 34, co-authored 56 publications receiving 32457 citations. Previous affiliations of Jean Weissenbach include University of Évry Val d'Essonne & Commissariat à l'énergie atomique et aux énergies alternatives.


Papers
More filters
Journal ArticleDOI
Eric S. Lander1, Lauren Linton1, Bruce W. Birren1, Chad Nusbaum1  +245 moreInstitutions (29)
15 Feb 2001-Nature
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

22,269 citations

Journal ArticleDOI
12 May 2011-Nature
TL;DR: Three robust clusters (referred to as enterotypes hereafter) are identified that are not nation or continent specific and confirmed in two published, larger cohorts, indicating that intestinal microbiota variation is generally stratified, not continuous.
Abstract: Our knowledge of species and functional composition of the human gut microbiome is rapidly increasing, but it is still based on very few cohorts and little is known about variation across the world. By combining 22 newly sequenced faecal metagenomes of individuals from four countries with previously published data sets, here we identify three robust clusters (referred to as enterotypes hereafter) that are not nation or continent specific. We also confirmed the enterotypes in two published, larger cohorts, indicating that intestinal microbiota variation is generally stratified, not continuous. This indicates further the existence of a limited number of well-balanced host-microbial symbiotic states that might respond differently to diet and drug intake. The enterotypes are mostly driven by species composition, but abundant molecular functions are not necessarily provided by abundant species, highlighting the importance of a functional analysis to understand microbial communities. Although individual host properties such as body mass index, age, or gender cannot explain the observed enterotypes, data-driven marker genes or functional modules can be identified for each of these host properties. For example, twelve genes significantly correlate with age and three functional modules with the body mass index, hinting at a diagnostic potential of microbial markers.

5,566 citations

Journal ArticleDOI
21 Oct 2004-Nature
TL;DR: Genome analysis provides a greatly improved fish gene catalogue, including identifying key genes previously thought to be absent in fish, and reconstructs much of the evolutionary history of ancient and recent chromosome rearrangements leading to the modern human karyotype.
Abstract: Tetraodon nigroviridis is a freshwater puffer fish with the smallest known vertebrate genome. Here, we report a draft genome sequence with long-range linkage and substantial anchoring to the 21 Tetraodon chromosomes. Genome analysis provides a greatly improved fish gene catalogue, including identifying key genes previously thought to be absent in fish. Comparison with other vertebrates and a urochordate indicates that fish proteins have diverged markedly faster than their mammalian homologues. Comparison with the human genome suggests ∼900 previously unannotated human genes. Analysis of the Tetraodon and human genomes shows that whole-genome duplication occurred in the teleost fish lineage, subsequent to its divergence from mammals. The analysis also makes it possible to infer the basic structure of the ancestral bony vertebrate genome, which was composed of 12 chromosomes, and to reconstruct much of the evolutionary history of ancient and recent chromosome rearrangements leading to the modern human karyotype.

1,889 citations

Journal ArticleDOI
22 May 2015-Science
TL;DR: It is found that environmental factors are incomplete predictors of community structure and associations across plankton functional types and phylogenetic groups to be nonrandomly distributed on the network and driven by both local and global patterns.
Abstract: Species interaction networks are shaped by abiotic and biotic factors. Here, as part of the Tara Oceans project, we studied the photic zone interactome using environmental factors and organismal abundance profiles and found that environmental factors are incomplete predictors of community structure. We found associations across plankton functional types and phylogenetic groups to be nonrandomly distributed on the network and driven by both local and global patterns. We identified interactions among grazers, primary producers, viruses, and (mainly parasitic) symbionts and validated network-generated hypotheses using microscopy to confirm symbiotic relationships. We have thus provided a resource to support further research on ocean food webs and integrating biological components into ocean models.

717 citations

Journal ArticleDOI
TL;DR: A genome screen of nine BSCL families from two geographical clusters revealed mutations in a gene homologous to the murine guanine nucleotide-binding protein, γ3-linked gene (Gng3lg) in all BSCL2-linked families, of general importance for understanding the molecular mechanisms underlying regulation of body fat distribution and insulin resistance.
Abstract: Congenital generalized lipodystrophy, or Berardinelli-Seip syndrome (BSCL), is a rare autosomal recessive disease characterized by a near-absence of adipose tissue from birth or early infancy and severe insulin resistance Other clinical and biological features include acanthosis nigricans, hyperandrogenism, muscular hypertrophy, hepatomegaly, altered glucose tolerance or diabetes mellitus, and hypertriglyceridemia A locus (BSCL1) has been mapped to 9q34 with evidence of heterogeneity Here, we report a genome screen of nine BSCL families from two geographical clusters (in Lebanon and Norway) We identified a new disease locus, designated BSCL2, within the 25-Mb interval flanked by markers D11S4076 and D11S480 on chromosome 11q13 Analysis of 20 additional families of various ethnic origins led to the identification of 11 families in which the disease cosegregates with the 11q13 locus; the remaining families provide confirmation of linkage to 9q34 Sequence analysis of genes located in the 11q13 interval disclosed mutations in a gene homologous to the murine guanine nucleotide-binding protein (G protein), gamma3-linked gene (Gng3lg) in all BSCL2-linked families BSCL2 is most highly expressed in brain and testis and encodes a protein (which we have called seipin) of unknown function Most of the variants are null mutations and probably result in a severe disruption of the protein These findings are of general importance for understanding the molecular mechanisms underlying regulation of body fat distribution and insulin resistance

672 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A WHO Consultation has taken place in parallel with a report by an American Diabetes Association Expert Committee to re‐examine diagnostic criteria and classification of diabetes mellitus and is hoped that the new classification will allow better classification of individuals and lead to fewer therapeutic misjudgements.
Abstract: The classification of diabetes mellitus and the tests used for its diagnosis were brought into order by the National Diabetes Data Group of the USA and the second World Health Organization Expert Committee on Diabetes Mellitus in 1979 and 1980. Apart from minor modifications by WHO in 1985, little has been changed since that time. There is however considerable new knowledge regarding the aetiology of different forms of diabetes as well as more information on the predictive value of different blood glucose values for the complications of diabetes. A WHO Consultation has therefore taken place in parallel with a report by an American Diabetes Association Expert Committee to re-examine diagnostic criteria and classification. The present document includes the conclusions of the former and is intended for wide distribution and discussion before final proposals are submitted to WHO for approval. The main changes proposed are as follows. The diagnostic fasting plasma (blood) glucose value has been lowered to > or =7.0 mmol l(-1) (6.1 mmol l(-1)). Impaired Glucose Tolerance (IGT) is changed to allow for the new fasting level. A new category of Impaired Fasting Glycaemia (IFG) is proposed to encompass values which are above normal but below the diagnostic cut-off for diabetes (plasma > or =6.1 to or =5.6 to <6.1 mmol l(-1)). Gestational Diabetes Mellitus (GDM) now includes gestational impaired glucose tolerance as well as the previous GDM. The classification defines both process and stage of the disease. The processes include Type 1, autoimmune and non-autoimmune, with beta-cell destruction; Type 2 with varying degrees of insulin resistance and insulin hyposecretion; Gestational Diabetes Mellitus; and Other Types where the cause is known (e.g. MODY, endocrinopathies). It is anticipated that this group will expand as causes of Type 2 become known. Stages range from normoglycaemia to insulin required for survival. It is hoped that the new classification will allow better classification of individuals and lead to fewer therapeutic misjudgements.

15,167 citations

Journal ArticleDOI
TL;DR: The definition and use of family-specific, manually curated gathering thresholds are explained and some of the features of domains of unknown function (also known as DUFs) are discussed, which constitute a rapidly growing class of families within Pfam.
Abstract: Pfam is a widely used database of protein families and domains. This article describes a set of major updates that we have implemented in the latest release (version 24.0). The most important change is that we now use HMMER3, the latest version of the popular profile hidden Markov model package. This software is approximately 100 times faster than HMMER2 and is more sensitive due to the routine use of the forward algorithm. The move to HMMER3 has necessitated numerous changes to Pfam that are described in detail. Pfam release 24.0 contains 11,912 families, of which a large number have been significantly updated during the past two years. Pfam is available via servers in the UK (http://pfam.sanger.ac.uk/), the USA (http://pfam.janelia.org/) and Sweden (http://pfam.sbc.su.se/).

14,075 citations

Journal ArticleDOI
J. Craig Venter1, Mark Raymond Adams1, Eugene W. Myers1, Peter W. Li1  +269 moreInstitutions (12)
16 Feb 2001-Science
TL;DR: Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems are indicated.
Abstract: A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five individuals. Two assembly strategies-a whole-genome assembly and a regional chromosome assembly-were used, each combining sequence data from Celera and the publicly funded genome effort. The public data were shredded into 550-bp segments to create a 2.9-fold coverage of those genome regions that had been sequenced, without including biases inherent in the cloning and assembly procedure used by the publicly funded group. This brought the effective coverage in the assemblies to eightfold, reducing the number and size of gaps in the final assembly over what would be obtained with 5.11-fold coverage. The two assembly strategies yielded very similar results that largely agree with independent mapping data. The assemblies effectively cover the euchromatic regions of the human chromosomes. More than 90% of the genome is in scaffold assemblies of 100,000 bp or more, and 25% of the genome is in scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed 26,588 protein-encoding transcripts for which there was strong corroborating evidence and an additional approximately 12,000 computationally derived genes with mouse matches or other weak supporting evidence. Although gene-dense clusters are obvious, almost half the genes are dispersed in low G+C sequence separated by large tracts of apparently noncoding sequence. Only 1.1% of the genome is spanned by exons, whereas 24% is in introns, with 75% of the genome being intergenic DNA. Duplications of segmental blocks, ranging in size up to chromosomal lengths, are abundant throughout the genome and reveal a complex evolutionary history. Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems. DNA sequence comparisons between the consensus sequence and publicly funded genome data provided locations of 2.1 million single-nucleotide polymorphisms (SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per 1250 on average, but there was marked heterogeneity in the level of polymorphism across the genome. Less than 1% of all SNPs resulted in variation in proteins, but the task of determining which SNPs have functional consequences remains an open challenge.

12,098 citations

Journal ArticleDOI
TL;DR: It was deemed essential to develop an appropriate, uniform terminology and a functional, working classification of diabetes that reflects the current knowledge about the disease.
Abstract: the growth of knowledge regarding the etiology and pathogenesis of diabetes has led many individuals and groups in the diabetes community to express the need for a revision of the nomenclature, diagnostic criteria, and classification of diabetes. As a consequence, it was deemed essential to develop an appropriate, uniform terminology and a functional, working classification of diabetes that reflects the current knowledge about the disease. (1)

11,886 citations

Journal ArticleDOI
14 Jan 2005-Cell
TL;DR: In a four-genome analysis of 3' UTRs, approximately 13,000 regulatory relationships were detected above the estimate of false-positive predictions, thereby implicating as miRNA targets more than 5300 human genes, which represented 30% of the gene set.

11,624 citations