scispace - formally typeset
Search or ask a question
Author

Jean-Yves Dupuy

Other affiliations: Alcatel-Lucent
Bio: Jean-Yves Dupuy is an academic researcher from Bell Labs. The author has contributed to research in topics: Heterojunction bipolar transistor & Amplifier. The author has an hindex of 20, co-authored 68 publications receiving 1449 citations. Previous affiliations of Jean-Yves Dupuy include Alcatel-Lucent.


Papers
More filters
Proceedings ArticleDOI
18 Sep 2011
TL;DR: In this article, the effect of in-band crosstalk on several advanced optical modulation formats, including QPSK, 16-QAM, and 64 QAM, was quantified through simulations and experiments.
Abstract: We quantify, through simulations and experiments at 21.4 GBaud, the effect of in-band crosstalk on several advanced optical modulation formats, showing a 1-dB penalty at a bit-error ratio of 1×10−3 from a crosstalk of −18 dB, −24 dB, and −32 dB for QPSK, 16-QAM, and 64-QAM, respectively.

210 citations

Proceedings Article
24 Feb 2008
TL;DR: In this article, 164 channels are modulated at 100Gbit/s with PDM-QPSK format, packed with 2bit/S/Hz information spectral density, and recovered by off-line processing in a coherent receiver after 2550km distance.
Abstract: A record capacityxdistance product of 41.8Petabit/s.km is demonstrated. 164 channels are modulated at 100Gbit/s with PDM-QPSK format, packed with 2bit/s/Hz information spectral density, and recovered by off-line processing in a coherent receiver after 2550km distance.

129 citations

Journal ArticleDOI
TL;DR: In this paper, a record capacity distance product of 41.8 Petabit/s middotkm was demonstrated with a total of 164 channels modulated at 100 Gbit/s with PDM-QPSK format, packed with 2 bit/s/Hz information spectral density.
Abstract: A record capacity distance product of 41.8 Petabit/s middotkm is demonstrated. A total of 164 channels are modulated at 100 Gbit/s with PDM-QPSK format, packed with 2 bit/s/Hz information spectral density and recovered by off-line processing in a coherent receiver after 2550 km distance.

106 citations

Proceedings ArticleDOI
17 Nov 2008
TL;DR: In this paper, the development of a submicron InP DHBT technology, optimized for the fabrication of ges50-GHz- clock mixed-signal ICs, was reported.
Abstract: We report on the development of a submicron InP DHBT technology, optimized for the fabrication of ges50-GHz- clock mixed-signal ICs. In-depth study of device geometry and structure has allowed to get the needed performances and yield. Special attention has been paid to critical thermal behavior. Various size submicron devices have been modeled using UCSD- HBT equations. These large signal models have allowed the design of 50-GHz clocked 50 G Decision and 100 G Selector circuits. The high quality of the measured characteristics demonstrates the suitability of this technology for the various applications of interest, like 100 Gbit/s transmission.

80 citations

Journal ArticleDOI
TL;DR: In this paper, a single in-phase/quadrature (I/Q) optical modulator driven by 8-level electrical waveforms from a novel high-power digital-to-analog converter (DAC) was used to achieve 400-km single-channel transmission.
Abstract: We generate a single-carrier 21.4-Gbaud polarization-division-multiplexed (PDM) 64-ary quadrature-amplitude-modulated (QAM) signal (256.8-Gb/s line rate) using a single in-phase/quadrature (I/Q) optical modulator driven by 8-level electrical waveforms from a novel high-power digital-to-analog converter (DAC). We measure a required optical signal-to-noise ratio of 29.5 dB (0.1-nm reference bandwidth; 10-3 bit-error rate), 4.6-dB off the theoretical limit. Using ultra-large-area fiber, we achieve 400-km single-channel transmission. The DAC was also used to obtain excellent results with quadrature-phase-shift-keyed and 16-QAM signals at 21.4 Gbaud.

72 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors summarized the simultaneous transmission of several independent spatial channels of light along optical fibres to expand the data-carrying capacity of optical communications, and showed that the results achieved in both multicore and multimode optical fibers are documented.
Abstract: This Review summarizes the simultaneous transmission of several independent spatial channels of light along optical fibres to expand the data-carrying capacity of optical communications. Recent results achieved in both multicore and multimode optical fibres are documented.

2,629 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a novel digital carrier recovery algorithm for arbitrary M-ary quadrature amplitude modulation (M-QAM) constellations in an intradyne coherent optical receiver.
Abstract: This paper presents a novel digital feedforward carrier recovery algorithm for arbitrary M-ary quadrature amplitude modulation (M-QAM) constellations in an intradyne coherent optical receiver. The approach does not contain any feedback loop and is therefore highly tolerant against laser phase noise. This is crucial, especially for higher order QAM constellations, which inherently have a smaller phase noise tolerance due to the lower spacing between adjacent constellation points. In addition to the mathematical description of the proposed carrier recovery algorithm also a possible hardware-efficient implementation in a parallelized system is presented and the performance of the algorithm is evaluated by Monte Carlo simulations for square 4-QAM (QPSK), 16-QAM, 64-QAM, and 256-QAM. For the simulations ASE noise and laser phase noise are considered as well as analog-to-digital converter (ADC) and internal resolution effects. For a 1 dB penalty at BER = 10-3, linewidth times symbol duration products of 4.1 x 10-4 (4-QAM), 1.4 x 10-4 (16-QAM), 4.0 x 10-5 (64-QAM) and 8.0 x 10-6 (256-QAM) are tolerable.

976 citations

Journal ArticleDOI
TL;DR: In this article, the performance of Nyquist-WDM Terabit superchannels implemented using polarization-multiplexed phase shift-keying based on 2 (PM-BPSK) and 4 (PM)-QPSK signal points was investigated through simulations.
Abstract: We investigated through simulations the performance of Nyquist-WDM Terabit superchannels implemented using polarization-multiplexed phase shift-keying based on 2 (PM-BPSK) and 4 (PM-QPSK) signal points or polarization-multiplexed quadrature amplitude modulation based on 8 (PM-8QAM) and 16 (PM-16QAM) signal points. Terabit superchannels are obtained through the aggregation of multiple subcarriers using the Nyquist-WDM technique, based on a tight spectral shaping of each subcarrier which allows very narrow spacing. We first studied the optimum transmitter/receiver filtering in a back-to-back configuration. Then we investigated the maximum reach for different spectral efficiencies, after nonlinear propagation over uncompensated links with lumped amplification. Performance for systems based on both standard single-mode fiber (SSMF) and large effective area non-zero dispersion-shifted fiber (NZDSF) has been analyzed. Assuming SSMF with 25-dB span loss, we found that PM-BPSK can reach 6480 km at a net capacity of 4 Tb/s across the C band. Conversely, PM-16QAM can deliver 27 Tb/s, but over 270 km only. Note that a lower span length, the use of Raman amplification and/or pure silica-core fibers (PSCFs) can significantly increase the maximum reach, but without changing the hierarchy among the performance of modulation formats. We also show that the maximum reachable distance is approximately 2/3 of the one achievable in linear propagation at the optimum launch power, regardless of the modulation format, spacing and fiber type. As additional results, we also verified that the optimum launch power per subcarrier linearly depends on the span loss, varies with the fiber type, but it is independent of the modulation format, and that the relationship between the maximum reachable distance and the span loss is almost linear.

545 citations

Journal ArticleDOI
TL;DR: In this paper, 16 researchers, each a world-leading expert in their respective subfields, contribute a section to this invited review article, summarizing their views on state-of-the-art and future developments in optical communications.
Abstract: Lightwave communications is a necessity for the information age. Optical links provide enormous bandwidth, and the optical fiber is the only medium that can meet the modern society's needs for transporting massive amounts of data over long distances. Applications range from global high-capacity networks, which constitute the backbone of the internet, to the massively parallel interconnects that provide data connectivity inside datacenters and supercomputers. Optical communications is a diverse and rapidly changing field, where experts in photonics, communications, electronics, and signal processing work side by side to meet the ever-increasing demands for higher capacity, lower cost, and lower energy consumption, while adapting the system design to novel services and technologies. Due to the interdisciplinary nature of this rich research field, Journal of Optics has invited 16 researchers, each a world-leading expert in their respective subfields, to contribute a section to this invited review article, summarizing their views on state-of-the-art and future developments in optical communications.

477 citations

Journal ArticleDOI
Peter J. Winzer1
TL;DR: In this article, the authors review high-spectral-efficiency optical modulation formats for use in digital coherent systems and highlight important trade-offs pertaining to the design and performance of coherent higher-order QAM transponders.
Abstract: As 100-Gb/s coherent systems based on polarization- division multiplexed quadrature phase shift keying (PDM-QPSK), with aggregate wavelength-division multiplexed (WDM) capacities close to 10 Tb/s, are getting widely deployed, the use of high-spectral-efficiency quadrature amplitude modulation (QAM) to increase both per-channel interface rates and aggregate WDM capacities is the next evolutionary step. In this paper we review high-spectral-efficiency optical modulation formats for use in digital coherent systems. We look at fundamental as well as at technological scaling trends and highlight important trade-offs pertaining to the design and performance of coherent higher-order QAM transponders.

360 citations