scispace - formally typeset
Search or ask a question
Author

Jeanne M. Schilder

Bio: Jeanne M. Schilder is an academic researcher from Indiana University. The author has contributed to research in topics: Ovarian cancer & Cancer. The author has an hindex of 24, co-authored 59 publications receiving 3322 citations. Previous affiliations of Jeanne M. Schilder include Indiana University – Purdue University Indianapolis & University of Kentucky.


Papers
More filters
Journal ArticleDOI
TL;DR: It is asserted that epithelial ovarian cancers derive from a subpopulation of CD44(+)CD117(+) cells, thus representing a possible therapeutic target for this devastating disease.
Abstract: The objective of this study was to identify and characterize a self-renewing subpopulation of human ovarian tumor cells (ovarian cancer-initiating cells, OCICs) fully capable of serial propagation of their original tumor phenotype in animals. Ovarian serous adenocarcinomas were disaggregated and subjected to growth conditions selective for self-renewing, nonadherent spheroids previously shown to derive from tissue stem cells.To affirm the existence of OCICs, xenoengraftment of as few as 100 dissociated spheroid cells allowed full recapitulation of the original tumor (grade 2/grade 3 serous adenocarcinoma), whereas >10 5 unselected cells remained nontumorigenic.Stemness properties of OCICs (under stem cell–selective conditions) were further established by cell proliferation assays and reverse transcription–PCR, demonstrating enhanced chemoresistance to the ovarian cancer chemotherapeutics cisplatin or paclitaxel and up-regulation of stem cell markers (Bmi-1, stem cell factor, Notch-1, Nanog, nestin, ABCG2, and Oct-4) compared with parental tumor cells or OCICs under differentiating conditions.To identify an OCIC cell surface phenotype, spheroid immunostaining showed significant up-regulation of the hyaluronate receptor CD44 and stem cell factor receptor CD117 (c-kit), a tyrosine kinase oncoprotein.Similar to sphere-forming OCICs, injection of only 100 CD44 + CD117 + cells could also serially propagate their original tumors, whereas 10 5 CD44CD117 cells remained nontumorigenic.Based on these findings, we assert that epithelial ovarian cancers derive from a subpopulation of CD44 + CD117 + cells, thus representing a possible therapeutic target for this devastating disease. [Cancer Res 2008;68(11):4311–20]

1,264 citations

Journal ArticleDOI
TL;DR: The results of this study suggest that low-dose decitabine altered DNA methylation of genes and cancer pathways, restoring sensitivity to carboplatin in patients with heavily pretreated ovarian cancer and resulting in a high RR and prolonged PFS.
Abstract: Preclinical studies have shown that hypomethylating agents reverse platinum resistance in ovarian cancer. In this phase II clinical trial, based upon the results of our phase I dose defining study, we tested the clinical and biologic activity of low-dose decitabine administered before carboplatin in platinum-resistant ovarian cancer patients. Among 17 patients with heavily pretreated and platinum-resistant ovarian cancer, the regimen induced a 35% objective response rate (RR) and progression-free survival (PFS) of 10.2 months, with nine patients (53%) free of progression at 6 months. Global and gene-specific DNA demethylation was achieved in peripheral blood mononuclear cells and tumors. The number of demethylated genes was greater (P < 0.05) in tumor biopsies from patients with PFS more than 6 versus less than 6 months (311 vs. 244 genes). Pathways enriched at baseline in tumors from patients with PFS more than 6 months included cytokine-cytokine receptor interactions, drug transporters, and mitogen-activated protein kinase, toll-like receptor and Jak-STAT signaling pathways, whereas those enriched in demethylated genes after decitabine treatment included pathways involved in cancer, Wnt signaling, and apoptosis (P < 0.01). Demethylation of MLH1, RASSF1A, HOXA10, and HOXA11 in tumors positively correlated with PFS (P < 0.05). Together, the results of this study suggest that low-dose decitabine altered DNA methylation of genes and cancer pathways, restoring sensitivity to carboplatin in patients with heavily pretreated ovarian cancer and resulting in a high RR and prolonged PFS.

326 citations

Journal ArticleDOI
TL;DR: The long-term survival of patients with Stage IA and IC epithelial ovarian cancer treated with unilateral adnexectomy is excellent and fertility-sparing surgery should be considered as a treatment option in women with Stage I epithel ovarian cancer who desire further childbearing.

245 citations

Journal ArticleDOI
17 May 2012-Oncogene
TL;DR: It is shown that transforming growth factor (TGF)-β, a cytokine involved in tumor dissemination is abundantly secreted in the OC microenvironment and induces TG2 expression and enzymatic activity, which enhances ovarian tumor metastasis by inducing EMT and a cancer stem cell phenotype.
Abstract: Tissue transglutaminase (TG2), an enzyme involved in cell proliferation, differentiation and apoptosis is overexpressed in ovarian carcinomas, where it modulates epithelial-to-mesenchymal transition (EMT) and promotes metastasis. Its regulation in ovarian cancer (OC) remains unexplored. Here, we show that transforming growth factor (TGF)-β, a cytokine involved in tumor dissemination is abundantly secreted in the OC microenvironment and induces TG2 expression and enzymatic activity. This is mediated at transcriptional level by SMADs and by TGF-β-activated kinase 1-mediated activation of the nuclear factor-κB complex. TGF-β-stimulated OC cells aggregate as spheroids, which enable peritoneal dissemination. We show that TGF-β-induced TG2 regulates EMT, formation of spheroids and OC metastasis. TG2 knock-down in OC cells decreases the number of cells harboring a cancer stem cell phenotype (CD44+/CD117+). Furthermore, CD44+/CD117+ cells isolated from human ovarian tumors express high levels of TG2. In summary, TGF-β-induced TG2 enhances ovarian tumor metastasis by inducing EMT and a cancer stem cell phenotype.

201 citations

Journal ArticleDOI
01 Sep 2010-Cancer
TL;DR: A phase 1 trial of low‐dose decitabine combined with carboplatin in patients with recurrent, platinum‐resistant ovarian cancer is conducted, finding that these agents can reverse platinum resistance in ovarian cancer cells.
Abstract: BACKGROUND: Aberrant DNA methylation is a hallmark of cancer, and DNA methyltransferase inhibitors have demonstrated clinical efficacy in hematologic malignancies. On the basis of preclinical studies indicating that hypomethylating agents can reverse platinum resistance in ovarian cancer cells, the authors conducted a phase 1 trial of low-dose decitabine combined with carboplatin in patients with recurrent, platinum-resistant ovarian cancer. METHODS: Decitabine was administered intravenously daily for 5 days, before carboplatin (area under the curve, 5) on Day 8 of a 28-day cycle. By using a standard 3 + 3 dose escalation, decitabine was tested at 2 dose levels: 10 mg/m2 (7 patients) or 20 mg/m2 (3 patients). Peripheral blood mononuclear cells (PBMCs) and plasma collected on Days 1 (pretreatment), 5, 8, and 15 were used to assess global (LINE-1 repetitive element) and gene-specific DNA methylation. RESULTS: Dose-limiting toxicity (DLT) at the 20-mg/m2 dose was grade 4 neutropenia (2 patients), and no DLTs were observed at 10 mg/m2. The most common toxicities were nausea, allergic reactions, neutropenia, fatigue, anorexia, vomiting, and abdominal pain, the majority being grades 1-2. One complete response was observed, and 3 additional patients had stable disease for ≥6 months. LINE-1 hypomethylation on Days 8 and 15 was detected in DNA from PBMCs. Of 5 ovarian cancer-associated methylated genes, HOXA11 and BRCA1 were demethylated in plasma on Days 8 and 15. CONCLUSIONS: Repetitive low-dose decitabine is tolerated when combined with carboplatin in ovarian cancer patients, and demonstrates biological (ie, DNA-hypomethylating) activity, justifying further testing for clinical efficacy. Cancer 2010. © 2010 American Cancer Society.

150 citations


Cited by
More filters
Journal ArticleDOI
19 Sep 2013-Nature
TL;DR: Studies using lineage tracing and deep sequencing could have implications for the cancer stem-cell model and may help to determine the extent to which it accounts for therapy resistance and disease progression.
Abstract: Phenotypic and functional heterogeneity arise among cancer cells within the same tumour as a consequence of genetic change, environmental differences and reversible changes in cell properties. Some cancers also contain a hierarchy in which tumorigenic cancer stem cells differentiate into non-tumorigenic progeny. However, it remains unclear what fraction of cancers follow the stem-cell model and what clinical behaviours the model explains. Studies using lineage tracing and deep sequencing could have implications for the cancer stem-cell model and may help to determine the extent to which it accounts for therapy resistance and disease progression.

2,014 citations

01 Jan 2014
TL;DR: Lymphedema is a common complication after treatment for breast cancer and factors associated with increased risk of lymphedEMA include extent of axillary surgery, axillary radiation, infection, and patient obesity.

1,988 citations

Journal ArticleDOI
TL;DR: New developments in the cancer stem cell field are discussed in relationship to changing insights into how normal stem cells maintain healthy tissues and the first successes of therapies based on the CSC concept are emerging.
Abstract: The cancer stem cell (CSC) concept was proposed four decades ago, and states that tumor growth, analogous to the renewal of healthy tissues, is fueled by small numbers of dedicated stem cells. It has gradually become clear that many tumors harbor CSCs in dedicated niches, and yet their identification and eradication has not been as obvious as was initially hoped. Recently developed lineage-tracing and cell-ablation strategies have provided insights into CSC plasticity, quiescence, renewal, and therapeutic response. Here we discuss new developments in the CSC field in relationship to changing insights into how normal stem cells maintain healthy tissues. Expectations in the field have become more realistic, and now, the first successes of therapies based on the CSC concept are emerging.

1,686 citations

Journal ArticleDOI
TL;DR: The mitochondrial metabolism of cancer cells is deregulated owing to the use of glycolytic intermediates, which are normally destined for oxidative phosphorylation, in anabolic reactions and activation of the cell death machinery by stimulating mitochondrial membrane permeabilization could therefore be promising therapeutic approaches.
Abstract: Mitochondria are the cells' powerhouse, but also their suicidal weapon store. Dozens of lethal signal transduction pathways converge on mitochondria to cause the permeabilization of the mitochondrial outer membrane, leading to the cytosolic release of pro-apoptotic proteins and to the impairment of the bioenergetic functions of mitochondria. The mitochondrial metabolism of cancer cells is deregulated owing to the use of glycolytic intermediates, which are normally destined for oxidative phosphorylation, in anabolic reactions. Activation of the cell death machinery in cancer cells by inhibiting tumour-specific alterations of the mitochondrial metabolism or by stimulating mitochondrial membrane permeabilization could therefore be promising therapeutic approaches.

1,458 citations

Journal ArticleDOI
TL;DR: This study shows that miR-34a is a key negative regulator of CD44(+) prostate cancer cells and establishes a strong rationale for developing miR -34a as a novel therapeutic agent against prostate CSCs.
Abstract: Cancer stem cells (CSCs), or tumor-initiating cells, are involved in tumor progression and metastasis. MicroRNAs (miRNAs) regulate both normal stem cells and CSCs, and dysregulation of miRNAs has been implicated in tumorigenesis. CSCs in many tumors--including cancers of the breast, pancreas, head and neck, colon, small intestine, liver, stomach, bladder and ovary--have been identified using the adhesion molecule CD44, either individually or in combination with other marker(s). Prostate CSCs with enhanced clonogenic and tumor-initiating and metastatic capacities are enriched in the CD44(+) cell population, but whether miRNAs regulate CD44(+) prostate cancer cells and prostate cancer metastasis remains unclear. Here we show, through expression analysis, that miR-34a, a p53 target, was underexpressed in CD44(+) prostate cancer cells purified from xenograft and primary tumors. Enforced expression of miR-34a in bulk or purified CD44(+) prostate cancer cells inhibited clonogenic expansion, tumor regeneration, and metastasis. In contrast, expression of miR-34a antagomirs in CD44(-) prostate cancer cells promoted tumor development and metastasis. Systemically delivered miR-34a inhibited prostate cancer metastasis and extended survival of tumor-bearing mice. We identified and validated CD44 as a direct and functional target of miR-34a and found that CD44 knockdown phenocopied miR-34a overexpression in inhibiting prostate cancer regeneration and metastasis. Our study shows that miR-34a is a key negative regulator of CD44(+) prostate cancer cells and establishes a strong rationale for developing miR-34a as a novel therapeutic agent against prostate CSCs.

1,308 citations