scispace - formally typeset
Search or ask a question
Author

Jeannie Mounger

Bio: Jeannie Mounger is an academic researcher from University of South Florida. The author has contributed to research in topics: Rhizophora mangle & Population. The author has an hindex of 3, co-authored 8 publications receiving 29 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors consider several processes that have been implicated as adaptive in invasion success, focusing on various forms of 'genomic shock' resulting from exposure to environmental stress, hybridization and whole-genome duplication (polyploidy), and leading to various patterns of gene expression re-programming and epigenetic changes that contribute to phenotypic variation or even novelty.
Abstract: Biological invasions impose ecological and economic problems on a global scale, but also provide extraordinary opportunities for studying contemporary evolution. It is critical to understand the evolutionary processes that underly invasion success in order to successfully manage existing invaders, and to prevent future invasions. As successful invasive species sometimes are suspected to rapidly adjust to their new environments in spite of very low genetic diversity, we are obliged to re-evaluate genomic-level processes that translate into phenotypic diversity. In this paper, we review work that supports the idea that trait variation, within and among invasive populations, can be created through epigenetic or other non-genetic processes, particularly in clonal invaders where somatic changes can persist indefinitely. We consider several processes that have been implicated as adaptive in invasion success, focusing on various forms of 'genomic shock' resulting from exposure to environmental stress, hybridization and whole-genome duplication (polyploidy), and leading to various patterns of gene expression re-programming and epigenetic changes that contribute to phenotypic variation or even novelty. These mechanisms can contribute to transgressive phenotypes, including hybrid vigour and novel traits, and may thus help to understand the huge successes of some plant invaders, especially those that are genetically impoverished. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'

39 citations

Journal ArticleDOI
TL;DR: In this paper, a reduced representation bisulfite sequencing approach (epi-genotyping by sequencing; epiGBS) was used to assess one type of nongenetic variation in maternal plants and offspring from natural populations of R. mangle from the Gulf Coast of Florida.
Abstract: The capacity to respond to environmental challenges ultimately relies on phenotypic variation which manifests from complex interactions of genetic and nongenetic mechanisms through development. While we know something about genetic variation and structure of many species of conservation importance, we know very little about the nongenetic contributions to variation. Rhizophora mangle is a foundation species that occurs in coastal estuarine habitats throughout the neotropics where it provides critical ecosystem functions and is potentially threatened by anthropogenic environmental changes. Several studies have documented landscape-level patterns of genetic variation in this species, but we know virtually nothing about the inheritance of nongenetic variation. To assess one type of nongenetic variation, we examined the patterns of DNA sequence and DNA methylation in maternal plants and offspring from natural populations of R. mangle from the Gulf Coast of Florida. We used a reduced representation bisulfite sequencing approach (epi-genotyping by sequencing; epiGBS) to address the following questions: (a) What are the levels of genetic and epigenetic diversity in natural populations of R. mangle? (b) How are genetic and epigenetic variation structured within and among populations? (c) How faithfully is epigenetic variation inherited? We found low genetic diversity but high epigenetic diversity from natural populations of maternal plants in the field. In addition, a large portion (up to ~25%) of epigenetic differences among offspring grown in common garden was explained by maternal family. Therefore, epigenetic variation could be an important source of response to challenging environments in the genetically depauperate populations of this foundation species.

11 citations

Journal ArticleDOI
TL;DR: 109 of 115 taxa with carboxysome loci have some form of DIC transporter encoded in their genomes, suggesting that CCMs consisting of carboxesomes and DIC transporters are widespread not only among 'Cyanobacteria', but also among members of 'Proteobacteria' and 'Actinobacteria'.
Abstract: Autotrophic microorganisms catalyze the entry of dissolved inorganic carbon (DIC; = CO2 + HCO3- + CO32-) into the biological component of the global carbon cycle, despite dramatic differences in DIC abundance and composition in their sometimes extreme environments "Cyanobacteria" are known to have CO2 concentrating mechanisms (CCMs) to facilitate growth under low CO2 conditions These CCMs consist of carboxysomes, containing enzymes ribulose 1,5-bisphosphate oxygenase and carbonic anhydrase, partnered to DIC transporters CCMs and their DIC transporters have been studied in a handful of other prokaryotes, but it was not known how common CCMs were beyond "Cyanobacteria" Since it had previously been noted that genes encoding potential transporters were found neighboring carboxysome loci, α-carboxysome loci were gathered from bacterial genomes, and potential transporter genes neighboring these loci are described here Members of transporter families whose members all transport DIC (CHC, MDT and Sbt) were common in these neighborhoods, as were members of the SulP transporter family, many of which transport DIC 109 of 115 taxa with carboxysome loci have some form of DIC transporter encoded in their genomes, suggesting that CCMs consisting of carboxysomes and DIC transporters are widespread not only among "Cyanobacteria", but also among members of "Proteobacteria" and "Actinobacteria"

10 citations

Posted ContentDOI
25 Oct 2020-bioRxiv
TL;DR: Low genetic diversity but high epigenetic diversity from natural populations of maternal plants in the field and that a large portion of epigenetic differences among offspring grown in common garden was explained by maternal family mean epigenetic variation could be an important source of response to challenging environments in the genetically depauperate populations of this foundation species.
Abstract: The capacity to respond to environmental challenges ultimately relies on phenotypic variation which manifests from complex interactions of genetic and non-genetic mechanisms through development. While we know something about genetic variation and structure of many species of conservation importance, we know very little about the non-genetic contributions to variation. Rhizophora mangle is a foundation species that occurs in coastal estuarine habitats throughout the neotropics where it provides critical ecosystem functions, and is potentially threatened by climate change. Several studies have documented landscape level patterns of genetic variation in this species, but we know virtually nothing about the inheritance of non-genetic variation. To assess one type of non-genetic variation, we examined the patterns of DNA sequence and DNA methylation in maternal plants and offspring from natural populations of R. mangle from the Gulf Coast of Florida. We used a reduced representation bisulfite sequencing approach (epi-genotyping by sequencing or epiGBS) to address the following questions: a) What are the levels of genetic and epigenetic diversity in natural populations of R. mangle? b) How are genetic and epigenetic variation structured within and among populations? c) How faithfully is epigenetic variation inherited? We found low genetic diversity but high epigenetic diversity from natural populations of maternal plants in the field and that a large portion (up to ~25%) of epigenetic differences among offspring grown in common garden was explained by maternal family. Therefore, epigenetic variation could be an important source of response to challenging environments in the genetically depauperate populations of this foundation species.

9 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Collectively, these data provide a new example of QTL dissection, and the developed diagnostic markers will be useful in marker-assisted pyramiding of QPht/Sl.cau-2D.2 with the other genes in wheat breeding.
Abstract: Two QTL with pleiotropic effects on plant height and spike length linked in coupling phase on chromosome 2DS were dissected, and diagnostic marker for each QTL was developed. Plant height (PHT) is a crucial trait related to plant architecture and yield potential, and dissection of its underlying genetic basis would help to improve the efficiency of designed breeding in wheat. Here, two quantitative trait loci (QTL) linked in coupling phase on the short arm of chromosome 2D with pleiotropic effects on PHT and spike length, QPht/Sl.cau-2D.1 and QPht/Sl.cau-2D.2, were separated and characterized. QPht/Sl.cau-2D.1 is a novel QTL located between SNP makers BS00022234_51 and BobWhite_rep_c63957_1472. QPht/Sl.cau-2D.2 is mapped between two SSR markers, SSR-2062 and Xgwm484, which are located on the same genomic interval as Rht8. Moreover, the diagnostic marker tightly linked with each QTL was developed for the haplotype analysis using diverse panels of wheat accessions. The frequency of the height-reduced allele of QPht/Sl.cau-2D.1 is much lower than that of QPht/Sl.cau-2D.2, suggesting that this novel QTL may be an attractive target for genetic improvement. Consistent with a previous study of Rht8, a significant difference in cell length was observed between the NILs of QPht/Sl.cau-2D.2. By contrast, there was no difference in cell length between NILs of QPht/Sl.cau-2D.1, indicating that the underlying molecular mechanism for these two QTL may be different. Collectively, these data provide a new example of QTL dissection, and the developed diagnostic markers will be useful in marker-assisted pyramiding of QPht/Sl.cau-2D.1 and/or QPht/Sl.cau-2D.2 with the other genes in wheat breeding.

57 citations

Journal ArticleDOI
TL;DR: In this paper, the authors consider the effect of natural selection on sequence-based genetic variation and show that epigenetic variation can enhance phenotypic plasticity and phenotypi cic variance.
Abstract: Epigenetics is the study of changes in gene activity that can be transmitted through cell divisions but cannot be explained by changes in the DNA sequence. Epigenetic mechanisms are central to gene regulation, phenotypic plasticity, development and the preservation of genome integrity. Epigenetic mechanisms are often held to make a minor contribution to evolutionary change because epigenetic states are typically erased and reset at every generation, and are therefore, not heritable. Nonetheless, there is growing appreciation that epigenetic variation makes direct and indirect contributions to evolutionary processes. First, some epigenetic states are transmitted intergenerationally and affect the phenotype of offspring. Moreover, bona fide heritable 'epialleles' exist and are quite common in plants. Such epialleles could, therefore, be subject to natural selection in the same way as conventional DNA sequence-based alleles. Second, epigenetic variation enhances phenotypic plasticity and phenotypic variance and thus can modulate the effect of natural selection on sequence-based genetic variation. Third, given that phenotypic plasticity is central to the adaptability of organisms, epigenetic mechanisms that generate plasticity and acclimation are important to consider in evolutionary theory. Fourth, some genes are under selection to be 'imprinted' identifying the sex of the parent from which they were derived, leading to parent-of-origin-dependent gene expression and effects. These effects can generate hybrid disfunction and contribute to speciation. Finally, epigenetic processes, particularly DNA methylation, contribute directly to DNA sequence evolution, because they act as mutagens on the one hand and modulate genome stability on the other by keeping transposable elements in check. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'

50 citations

Journal ArticleDOI
TL;DR: For example, this paper showed that inherited epigenetic marks can be transgenerationally inherited and persist for several generations and that inherited epimutations with phenotypic effects may end up in phenotype-fixing genetic mutations by accelerated mutation of methylated nucleotides.
Abstract: Laboratory experiments and fieldwork with asexually reproducing invertebrates and vertebrates clearly revealed that animal populations can produce substantial phenotypic variation despite genetic identity. This epigenetically caused phenotypic variation comes from two different sources, namely directional environmental induction and bed-hedging developmental stochasticity. Both occur together and are mediated by molecular epigenetic mechanisms like DNA methylation, histone modifications and microRNAs. These epigenetic mechanisms are also involved in insect polyphenism, phenotypic changes in early domestication, and gene expression change and chromatin rearrangement during speciation. Epigenetic variation is particularly important for asexual populations helping them to stay in the game of life when the environmental conditions change. However, it is also relevant for sexually reproducing populations, as shown for genetically impoverished invasive groups, cave animals and sessile taxa that cannot evade unfavourable environmental conditions. Experiments revealed that epigenetic marks can be transgenerationally inherited and persist for several generations. First evidence suggests that inherited epimutations with phenotypic effects may end-up in phenotype-fixing genetic mutations by accelerated mutation of methylated nucleotides. Refined concepts, suitable animal models, fast and affordable new omics techniques that require only small tissue samples, and appropriate data interpretation tools are now available enabling future investigations in ecological and evolutionary epigenetics with high accuracy.

29 citations

Journal ArticleDOI
TL;DR: In this paper, the authors focus on DNA methylation, as it provides an easily quantifiable readout of such variation and argue that the adaptive contribution of TE-associated epivariation lies predominantly in its capacity to modulate TE mobilization in response to the environment, hence providing hardwired opportunities for the flexible exploration of the phenotypic space.
Abstract: DNA provides the fundamental framework for heritability, yet heritable trait variation need not be completely 'hard-wired' into the DNA sequence. In plants, the epigenetic machinery that controls transposable element (TE) activity, and which includes DNA methylation, underpins most known cases of inherited trait variants that are independent of DNA sequence changes. Here, we review our current knowledge of the extent, mechanisms and potential adaptive contribution of epiallelic variation at TE-containing alleles in this group of species. For the purpose of this review, we focus mainly on DNA methylation, as it provides an easily quantifiable readout of such variation. The picture that emerges is complex. On the one hand, pronounced differences in DNA methylation at TE sequences can either occur spontaneously or be induced experimentally en masse across the genome through genetic means. Many of these epivariants are stably inherited over multiple sexual generations, thus leading to transgenerational epigenetic inheritance. Functional consequences can be significant, yet they are typically of limited magnitude and although the same epivariants can be found in nature, the factors involved in their generation in this setting remain to be determined. On the other hand, moderate DNA methylation variation at TE-containing alleles can be reproducibly induced by the environment, again usually with mild effects, and most of this variation tends to be lost across generations. Based on these considerations, we argue that TE-containing alleles, rather than their inherited epiallelic variants, are the main targets of natural selection. Thus, we propose that the adaptive contribution of TE-associated epivariation, whether stable or not, lies predominantly in its capacity to modulate TE mobilization in response to the environment, hence providing hard-wired opportunities for the flexible exploration of the phenotypic space. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'

29 citations