scispace - formally typeset
Search or ask a question
Author

Jeet Kalia

Bio: Jeet Kalia is an academic researcher from Indian Institute of Science. The author has contributed to research in topics: Medicine & Metabolite. The author has an hindex of 12, co-authored 20 publications receiving 1411 citations. Previous affiliations of Jeet Kalia include Wisconsin Alumni Research Foundation & Indian Institute of Science Education and Research, Pune.

Papers
More filters
Journal ArticleDOI
TL;DR: The hydrolytic stability of isostructural hydrazones and an oxime have been determined at pD 5.0–9.0, suggesting a general mechanism for conjugate hydrolysis.
Abstract: Hydrazones and oximes are common conjugates, but are labile to hydrolysis. The hydrolytic stability of isostructural hydrazones and an oxime have been determined at pD 5.0–9.0. The hydrolysis of each adduct was catalyzed by acid. Rate constants for oxime hydrolysis were nearly 103-fold lower than those for simple hydrazones; a trialkylhydrazonium ion (formed after condensation) was even more stable than the oxime. The data suggest a general mechanism for conjugate hydrolysis.

705 citations

Journal ArticleDOI
TL;DR: The stability of bioconjugation linkages is discussed-an important but often overlooked aspect of the field and it is hoped that this information will help investigators choose optimal linkages for their applications.
Abstract: Bioconjugation is a burgeoning field of research. Novel methods for the mild and site-specific derivatization of proteins, DNA, RNA, and carbohydrates have been developed for applications such as ligand discovery, disease diagnosis, and high-throughput screening. These powerful methods owe their existence to the discovery of chemoselective reactions that enable bioconjugation under physiological conditions—a tremendous achievement of modern organic chemistry. Here, we review recent advances in bioconjugation chemistry. Additionally, we discuss the stability of bioconjugation linkages—an important but often overlooked aspect of the field. We anticipate that this information will help investigators choose optimal linkages for their applications. Moreover, we hope that the noted limitations of existing bioconjugation methods will provide inspiration to modern organic chemists.

289 citations

Journal ArticleDOI
TL;DR: This review will highlight fundamental insights into toxin-channel interactions and recently developed toxin screening methods and practical applications of engineered toxins.

131 citations

Journal ArticleDOI
TL;DR: A chromophoric maleimide is used to demonstrate that both molybdate and chromate catalyze the hydrolysis of an imido group near neutral pH, and provides a strategy for decreasing the heterogeneity of bioconjugates derived from maleimides.

81 citations

Journal ArticleDOI
TL;DR: This strategy provides a general means to fabricate microarrays displaying proteins in a uniform orientation by installing an azido group at the C-terminus of a model protein by using the method of expressed protein ligation and a synthetic bifunctional reagent.

78 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The basis for the unique properties and rate enhancement for triazole formation under Cu(1) catalysis should be found in the high ∆G of the reaction in combination with the low character of polarity of the dipole of the noncatalyzed thermal reaction, which leads to a considerable activation barrier.
Abstract: The Huisgen 1,3-dipolar cycloaddition reaction of organic azides and alkynes has gained considerable attention in recent years due to the introduction in 2001 of Cu(1) catalysis by Tornoe and Meldal, leading to a major improvement in both rate and regioselectivity of the reaction, as realized independently by the Meldal and the Sharpless laboratories. The great success of the Cu(1) catalyzed reaction is rooted in the fact that it is a virtually quantitative, very robust, insensitive, general, and orthogonal ligation reaction, suitable for even biomolecular ligation and in vivo tagging or as a polymerization reaction for synthesis of long linear polymers. The triazole formed is essentially chemically inert to reactive conditions, e.g. oxidation, reduction, and hydrolysis, and has an intermediate polarity with a dipolar moment of ∼5 D. The basis for the unique properties and rate enhancement for triazole formation under Cu(1) catalysis should be found in the high ∆G of the reaction in combination with the low character of polarity of the dipole of the noncatalyzed thermal reaction, which leads to a considerable activation barrier. In order to understand the reaction in detail, it therefore seems important to spend a moment to consider the structural and mechanistic aspects of the catalysis. The reaction is quite insensitive to reaction conditions as long as Cu(1) is present and may be performed in an aqueous or organic environment both in solution and on solid support.

3,855 citations

Journal ArticleDOI
01 Jan 1958-Nature
TL;DR: In this paper, the authors present an overview of the relationship between organic chemistry and natural products, focusing on the Stereochemistry and the Chemistry of Natural Products (SCHP).
Abstract: Organic Chemistry By Dr. I. L. Finar. Vol. 2: Stereochemistry and the Chemistry of Natural Products. Pp. xi + 733. (London and New York: Longmans, Green and Co., Ltd., 1956.) 40s. net.

1,037 citations

Journal ArticleDOI
19 Sep 2018-Neuron
TL;DR: The types of information molecular dynamics simulations can provide and the ways in which they typically motivate further experimental work are described.

964 citations

Journal ArticleDOI
TL;DR: In a mouse mammary tumor model, the stability and therapeutic activity of the antibody conjugate were affected positively by succinimide ring hydrolysis and negatively by maleimide exchange with thiol-reactive constituents in plasma.
Abstract: The reactive thiol in cysteine is used for coupling maleimide linkers in the generation of antibody conjugates. To assess the impact of the conjugation site, we engineered cysteines into a therapeutic HER2/neu antibody at three sites differing in solvent accessibility and local charge. The highly solvent-accessible site rapidly lost conjugated thiol-reactive linkers in plasma owing to maleimide exchange with reactive thiols in albumin, free cysteine or glutathione. In contrast, a partially accessible site with a positively charged environment promoted hydrolysis of the succinimide ring in the linker, thereby preventing this exchange reaction. The site with partial solvent-accessibility and neutral charge displayed both properties. In a mouse mammary tumor model, the stability and therapeutic activity of the antibody conjugate were affected positively by succinimide ring hydrolysis and negatively by maleimide exchange with thiol-reactive constituents in plasma. Thus, the chemical and structural dynamics of the conjugation site can influence antibody conjugate performance by modulating the stability of the antibody-linker interface.

853 citations

Journal ArticleDOI
TL;DR: This paper is a review of the recent literatures on enzyme immobilization by various techniques, the need for immobilization and different applications in industry, covering the last two decades.
Abstract: Compared to free enzymes in solution, immobilized enzymes are more robust and more resistant to environmental changes. More importantly, the heterogeneity of the immo-bilized enzyme systems allows an easy recovery of both enzymes and products, multiple re-use of enzymes, continuous operation of enzymatic processes, rapid termination of reactions, and greater variety of bioreactor designs. This paper is a review of the recent literatures on enzyme immobilization by various techniques, the need for immobilization and different applications in industry, covering the last two decades. The most recent papers, patents, and reviews on immobilization strategies and application are reviewed.

657 citations