scispace - formally typeset
Search or ask a question
Author

Jeff A. Bilmes

Bio: Jeff A. Bilmes is an academic researcher from University of Washington. The author has contributed to research in topics: Submodular set function & Graphical model. The author has an hindex of 65, co-authored 377 publications receiving 21126 citations. Previous affiliations of Jeff A. Bilmes include International Computer Science Institute & University of California, Berkeley.


Papers
More filters
01 Sep 2012
TL;DR: The Encyclopedia of DNA Elements project provides new insights into the organization and regulation of the authors' genes and genome, and is an expansive resource of functional annotations for biomedical research.

2,767 citations

Journal Article
TL;DR: In this paper, the authors describe the EM algorithm for finding the parameters of a mixture of Gaussian densities and a hidden Markov model (HMM) for both discrete and Gaussian mixture observation models.
Abstract: We describe the maximum-likelihood parameter estimation problem and how the ExpectationMaximization (EM) algorithm can be used for its solution. We first describe the abstract form of the EM algorithm as it is often given in the literature. We then develop the EM parameter estimation procedure for two applications: 1) finding the parameters of a mixture of Gaussian densities, and 2) finding the parameters of a hidden Markov model (HMM) (i.e., the Baum-Welch algorithm) for both discrete and Gaussian mixture observation models. We derive the update equations in fairly explicit detail but we do not prove any convergence properties. We try to emphasize intuition rather than mathematical rigor.

2,455 citations

Proceedings Article
16 Jun 2013
TL;DR: DCCA is introduced, a method to learn complex nonlinear transformations of two views of data such that the resulting representations are highly linearly correlated and Parameters of both transformations are jointly learned to maximize the (regularized) total correlation.
Abstract: We introduce Deep Canonical Correlation Analysis (DCCA), a method to learn complex nonlinear transformations of two views of data such that the resulting representations are highly linearly correlated. Parameters of both transformations are jointly learned to maximize the (regularized) total correlation. It can be viewed as a nonlinear extension of the linear method canonical correlation analysis (CCA). It is an alternative to the nonparametric method kernel canonical correlation analysis (KCCA) for learning correlated nonlinear transformations. Unlike KCCA, DCCA does not require an inner product, and has the advantages of a parametric method: training time scales well with data size and the training data need not be referenced when computing the representations of unseen instances. In experiments on two real-world datasets, we find that DCCA learns representations with significantly higher correlation than those learned by CCA and KCCA. We also introduce a novel non-saturating sigmoid function based on the cube root that may be useful more generally in feedforward neural networks.

1,502 citations

Proceedings Article
19 Jun 2011
TL;DR: A class of submodular functions meant for document summarization tasks which combine two terms, one which encourages the summary to be representative of the corpus, and the other which positively rewards diversity, which means that an efficient scalable greedy optimization scheme has a constant factor guarantee of optimality.
Abstract: We design a class of submodular functions meant for document summarization tasks. These functions each combine two terms, one which encourages the summary to be representative of the corpus, and the other which positively rewards diversity. Critically, our functions are monotone nondecreasing and submodular, which means that an efficient scalable greedy optimization scheme has a constant factor guarantee of optimality. When evaluated on DUC 2004-2007 corpora, we obtain better than existing state-of-art results in both generic and query-focused document summarization. Lastly, we show that several well-established methods for document summarization correspond, in fact, to submodular function optimization, adding further evidence that submodular functions are a natural fit for document summarization.

781 citations

Proceedings Article
06 Jul 2015
TL;DR: This work finds an advantage for correlation-based representation learning, while the best results on most tasks are obtained with the new variant, deep canonically correlated autoencoders (DCCAE).
Abstract: We consider learning representations (features) in the setting in which we have access to multiple unlabeled views of the data for representation learning while only one view is available at test time. Previous work on this problem has proposed several techniques based on deep neural networks, typically involving either autoencoder-like networks with a reconstruction objective or paired feedforward networks with a correlation-based objective. We analyze several techniques based on prior work, as well as new variants, and compare them experimentally on visual, speech, and language domains. To our knowledge this is the first head-to-head comparison of a variety of such techniques on multiple tasks. We find an advantage for correlation-based representation learning, while the best results on most tasks are obtained with our new variant, deep canonically correlated autoencoders (DCCAE).

634 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
06 Sep 2012-Nature
TL;DR: The Encyclopedia of DNA Elements project provides new insights into the organization and regulation of the authors' genes and genome, and is an expansive resource of functional annotations for biomedical research.
Abstract: The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an expansive resource of functional annotations for biomedical research.

13,548 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
23 Jan 2015-Science
TL;DR: In this paper, a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level.
Abstract: Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level. Our tissue-based analysis detected more than 90% of the putative protein-coding genes. We used this approach to explore the human secretome, the membrane proteome, the druggable proteome, the cancer proteome, and the metabolic functions in 32 different tissues and organs. All the data are integrated in an interactive Web-based database that allows exploration of individual proteins, as well as navigation of global expression patterns, in all major tissues and organs in the human body.

9,745 citations