scispace - formally typeset
Search or ask a question
Author

Jeff Kramer

Bio: Jeff Kramer is an academic researcher from Imperial College London. The author has contributed to research in topics: Software system & Software development. The author has an hindex of 60, co-authored 267 publications receiving 18338 citations. Previous affiliations of Jeff Kramer include University of London & Queen's University.


Papers
More filters
Book ChapterDOI
TL;DR: The goal of this roadmap paper is to summarize the state-of-the-art and to identify critical challenges for the systematic software engineering of self-adaptive systems.
Abstract: The goal of this roadmap paper is to summarize the state-of-the-art and to identify critical challenges for the systematic software engineering of self-adaptive systems. The paper is partitioned into four parts, one for each of the identified essential views of self-adaptation: modelling dimensions, requirements, engineering, and assurances. For each view, we present the state-of-the-art and the challenges that our community must address. This roadmap paper is a result of the Dagstuhl Seminar 08031 on "Software Engineering for Self-Adaptive Systems," which took place in January 2008.

1,133 citations

Proceedings ArticleDOI
23 May 2007
TL;DR: Some of the current promising work in self-management is discussed and an outline three-layer reference model is presented as a context in which to articulate some of the main outstanding research challenges.
Abstract: Self-management is put forward as one of the means by which we could provide systems that are scalable, support dynamic composition and rigorous analysis, and are flexible and robust in the presence of change. In this paper, we focus on architectural approaches to self-management, not because the language-level or network-level approaches are uninteresting or less promising, but because we believe that the architectural level seems to provide the required level of abstraction and generality to deal with the challenges posed. A self-managed software architecture is one in which components automatically configure their interaction in a way that is compatible with an overall architectural specification and achieves the goals of the system. The objective is to minimise the degree of explicit management necessary for construction and subsequent evolution whilst preserving the architectural properties implied by its specification. This paper discusses some of the current promising work and presents an outline three-layer reference model as a context in which to articulate some of the main outstanding research challenges.

900 citations

Book ChapterDOI
25 Sep 1995
TL;DR: The paper presents the Darwin notation for specifying this high-level organisation of computational elements and the interactions between those elements in distributed systems at the architectural level.
Abstract: There is a real need for clear and sound design specifications of distributed systems at the architectural level This is the level of the design which deals with the high-level organisation of computational elements and the interactions between those elements The paper presents the Darwin notation for specifying this high-level organisation Darwin is in essence a declarative binding language which can be used to define hierarchic compositions of interconnected components Distribution is dealt with orthogonally to system structuring The language supports the specification of both static structures and dynamic structures which may evolve during execution The central abstractions managed by Darwin are components and services Services are the means by which components interact

873 citations

Journal ArticleDOI
TL;DR: A model for dynamic change management which separates structural concerns from component application concerns is presented and is applied to an example problem, 'evolving philosophers', which has been implemented and tested in the Conic environment for distributed systems.
Abstract: A model for dynamic change management which separates structural concerns from component application concerns is presented. This separation of concerns permits the formulation of general structural rules for change at the configuration level without the need to consider application state, and the specification of application component actions without prior knowledge of the actual structural changes which may be introduced. In addition, the changes can be applied in such a way so as to leave the modified system in a consistent state, and cause no disturbance to the unaffected part of the operational system. The model is applied to an example problem, 'evolving philosophers'. The principles of this model have been implemented and tested in the Conic environment for distributed systems. >

872 citations

Book
01 Jan 1999
TL;DR: The LTSA tool as mentioned in this paper provides a thoroughly updated approach to the basic concepts and techniques behind concurrent programming and provides problem patterns and associated solution techniques which enablestudents to recognize problems and arrive at solutions.
Abstract: Concurrency provides a thoroughly updatedapproach to the basic concepts and techniques behind concurrent programming. Concurrent programming is complex and demands a much more formal approach than sequential programming. In order to develop a thorough understanding of the topicMagee and Kramer present concepts, techniques and problems through a variety of forms: informal descriptions, illustrative examples, abstract models and concrete Java examples. These combineto provide problem patterns and associated solution techniqueswhich enablestudents torecognise problems and arrive at solutions. New features include: New chapters covering program verification and logical properties. More student exercises. Supporting website contains an updated version of the LTSA tool for modelling concurrency, model animation, and model checking. Website also includes the full set of state models, java examples, and demonstration programs and a comprehensive set of overhead slides for course presentation.

798 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: A definition and a classification framework for architecture description languages are presented and the utility of the definition is demonstrated by using it to differentiate ADLs from other modeling notations, enabling us, in the process, to identify key properties ofADLs.
Abstract: Software architectures shift the focus of developers from lines-of-code to coarser-grained architectural elements and their overall interconnection structure. Architecture description languages (ADLs) have been proposed as modeling notations to support architecture-based development. There is, however, little consensus in the research community on what is an ADL, what aspects of an architecture should be modeled in an ADL, and which of several possible ADLs is best suited for a particular problem. Furthermore, the distinction is rarely made between ADLs on one hand and formal specification, module interconnection, simulation and programming languages on the other. This paper attempts to provide an answer to these questions. It motivates and presents a definition and a classification framework for ADLs. The utility of the definition is demonstrated by using it to differentiate ADLs from other modeling notations. The framework is used to classify and compare several existing ADLs, enabling us, in the process, to identify key properties of ADLs. The comparison highlights areas where existing ADLs provide extensive support and those in which they are deficient, suggesting a research agenda for the future.

2,148 citations

Proceedings ArticleDOI
01 May 2000
TL;DR: An overview of the field of software systems requirements engineering (RE) is presented, describing the main areas of RE practice, and highlights some key open research issues for the future.
Abstract: This paper presents an overview of the field of software systems requirements engineering (RE). It describes the main areas of RE practice, and highlights some key open research issues for the future.

2,114 citations

Book
01 Nov 2002
TL;DR: Drive development with automated tests, a style of development called “Test-Driven Development” (TDD for short), which aims to dramatically reduce the defect density of code and make the subject of work crystal clear to all involved.
Abstract: From the Book: “Clean code that works” is Ron Jeffries’ pithy phrase. The goal is clean code that works, and for a whole bunch of reasons: Clean code that works is a predictable way to develop. You know when you are finished, without having to worry about a long bug trail.Clean code that works gives you a chance to learn all the lessons that the code has to teach you. If you only ever slap together the first thing you think of, you never have time to think of a second, better, thing. Clean code that works improves the lives of users of our software.Clean code that works lets your teammates count on you, and you on them.Writing clean code that works feels good.But how do you get to clean code that works? Many forces drive you away from clean code, and even code that works. Without taking too much counsel of our fears, here’s what we do—drive development with automated tests, a style of development called “Test-Driven Development” (TDD for short). In Test-Driven Development, you: Write new code only if you first have a failing automated test.Eliminate duplication. Two simple rules, but they generate complex individual and group behavior. Some of the technical implications are:You must design organically, with running code providing feedback between decisionsYou must write your own tests, since you can’t wait twenty times a day for someone else to write a testYour development environment must provide rapid response to small changesYour designs must consist of many highly cohesive, loosely coupled components, just to make testing easy The two rules imply an order to the tasks ofprogramming: 1. Red—write a little test that doesn’t work, perhaps doesn’t even compile at first 2. Green—make the test work quickly, committing whatever sins necessary in the process 3. Refactor—eliminate all the duplication created in just getting the test to work Red/green/refactor. The TDD’s mantra. Assuming for the moment that such a style is possible, it might be possible to dramatically reduce the defect density of code and make the subject of work crystal clear to all involved. If so, writing only code demanded by failing tests also has social implications: If the defect density can be reduced enough, QA can shift from reactive to pro-active workIf the number of nasty surprises can be reduced enough, project managers can estimate accurately enough to involve real customers in daily developmentIf the topics of technical conversations can be made clear enough, programmers can work in minute-by-minute collaboration instead of daily or weekly collaborationAgain, if the defect density can be reduced enough, we can have shippable software with new functionality every day, leading to new business relationships with customers So, the concept is simple, but what’s my motivation? Why would a programmer take on the additional work of writing automated tests? Why would a programmer work in tiny little steps when their mind is capable of great soaring swoops of design? Courage. Courage Test-driven development is a way of managing fear during programming. I don’t mean fear in a bad way, pow widdle prwogwammew needs a pacifiew, but fear in the legitimate, this-is-a-hard-problem-and-I-can’t-see-the-end-from-the-beginning sense. If pain is nature’s way of saying “Stop!”, fear is nature’s way of saying “Be careful.” Being careful is good, but fear has a host of other effects: Makes you tentativeMakes you want to communicate lessMakes you shy from feedbackMakes you grumpy None of these effects are helpful when programming, especially when programming something hard. So, how can you face a difficult situation and: Instead of being tentative, begin learning concretely as quickly as possible.Instead of clamming up, communicate more clearly.Instead of avoiding feedback, search out helpful, concrete feedback.(You’ll have to work on grumpiness on your own.) Imagine programming as turning a crank to pull a bucket of water from a well. When the bucket is small, a free-spinning crank is fine. When the bucket is big and full of water, you’re going to get tired before the bucket is all the way up. You need a ratchet mechanism to enable you to rest between bouts of cranking. The heavier the bucket, the closer the teeth need to be on the ratchet. The tests in test-driven development are the teeth of the ratchet. Once you get one test working, you know it is working, now and forever. You are one step closer to having everything working than you were when the test was broken. Now get the next one working, and the next, and the next. By analogy, the tougher the programming problem, the less ground should be covered by each test. Readers of Extreme Programming Explained will notice a difference in tone between XP and TDD. TDD isn’t an absolute like Extreme Programming. XP says, “Here are things you must be able to do to be prepared to evolve further.” TDD is a little fuzzier. TDD is an awareness of the gap between decision and feedback during programming, and techniques to control that gap. “What if I do a paper design for a week, then test-drive the code? Is that TDD?” Sure, it’s TDD. You were aware of the gap between decision and feedback and you controlled the gap deliberately. That said, most people who learn TDD find their programming practice changed for good. “Test Infected” is the phrase Erich Gamma coined to describe this shift. You might find yourself writing more tests earlier, and working in smaller steps than you ever dreamed would be sensible. On the other hand, some programmers learn TDD and go back to their earlier practices, reserving TDD for special occasions when ordinary programming isn’t making progress. There are certainly programming tasks that can’t be driven solely by tests (or at least, not yet). Security software and concurrency, for example, are two topics where TDD is not sufficient to mechanically demonstrate that the goals of the software have been met. Security relies on essentially defect-free code, true, but also on human judgement about the methods used to secure the software. Subtle concurrency problems can’t be reliably duplicated by running the code. Once you are finished reading this book, you should be ready to: Start simplyWrite automated testsRefactor to add design decisions one at a time This book is organized into three sections. An example of writing typical model code using TDD. The example is one I got from Ward Cunningham years ago, and have used many times since, multi-currency arithmetic. In it you will learn to write tests before code and grow a design organically.An example of testing more complicated logic, including reflection and exceptions, by developing a framework for automated testing. This example also serves to introduce you to the xUnit architecture that is at the heart of many programmer-oriented testing tools. In the second example you will learn to work in even smaller steps than in the first example, including the kind of self-referential hooha beloved of computer scientists.Patterns for TDD. Included are patterns for the deciding what tests to write, how to write tests using xUnit, and a greatest hits selection of the design patterns and refactorings used in the examples. I wrote the examples imagining a pair programming session. If you like looking at the map before wandering around, you may want to go straight to the patterns in Section 3 and use the examples as illustrations. If you prefer just wandering around and then looking at the map to see where you’ve been, try reading the examples through and refering to the patterns when you want more detail about a technique, then using the patterns as a reference. Several reviewers have commented they got the most out of the examples when they started up a programming environment and entered the code and ran the tests as they read. A note about the examples. Both examples, multi-currency calculation and a testing framework, appear simple. There are (and I have seen) complicated, ugly, messy ways of solving the same problems. I could have chosen one of those complicated, ugly, messy solutions to give the book an air of “reality.” However, my goal, and I hope your goal, is to write clean code that works. Before teeing off on the examples as being too simple, spend 15 seconds imagining a programming world in which all code was this clear and direct, where there were no complicated solutions, only apparently complicated problems begging for careful thought. TDD is a practice that can help you lead yourself to exactly that careful thought.

1,864 citations

Proceedings ArticleDOI
Eric Yu1
TL;DR: This paper argues that a different kind of modelling and reasoning support is needed for the early phase of requirements engineering, which aims to model and analyze stakeholder interests and how they might be addressed, or compromised, by various system-and-environment alternatives.
Abstract: Requirements are usually understood as stating what a system is supposed to do, as apposed to how it should do it. However, understanding the organizational context and rationales (the "Whys") that lead up to systems requirements can be just as important for the ongoing success of the system. Requirements modelling techniques can be used to help deal with the knowledge and reasoning needed in this earlier phase of requirements engineering. However most existing requirements techniques are intended more for the later phase of requirements engineering, which focuses on completeness, consistency, and automated verification of requirements. In contrast, the early phase aims to model and analyze stakeholder interests and how they might be addressed, or compromised, by various system-and-environment alternatives. This paper argues, therefore, that a different kind of modelling and reasoning support is needed for the early phase. An outline of the i* framework is given as an example of a step in this direction. Meeting scheduling is used as a domain example.

1,743 citations