scispace - formally typeset
Search or ask a question
Author

Jeff S. Volek

Bio: Jeff S. Volek is an academic researcher from Ohio State University. The author has contributed to research in topics: Weight loss & Type 2 diabetes. The author has an hindex of 88, co-authored 367 publications receiving 22363 citations. Previous affiliations of Jeff S. Volek include Pennsylvania State University & University of Connecticut.


Papers
More filters
Journal ArticleDOI
TL;DR: The American College of Sports Medicine recommends that the strategies outlined in this position paper be incorporated into interventions targeting weight loss and the prevention of weight regain for adults.
Abstract: In excess of 55% of adults in the United States are classified as either overweight (body mass index = 25-29.9 kg.m(-2)) or obese (body mass index > or = 30 kg.m(-2)). To address this significant public health problem, the American College of Sports Medicine recommends that the combination of reductions in energy intake and increases in energy expenditure, through structured exercise and other forms of physical activity, be a component of weight loss intervention programs. An energy deficit of 500-1000 kcal.d-1 achieved through reductions in total energy intake is recommended. Moreover, it appears that reducing dietary fat intake to <30% of total energy intake may facilitate weight loss by reducing total energy intake. Although there may be advantages to modifying protein and carbohydrate intake, the optimal doses of these macronutritents for weight loss have not been determined. Significant health benefits can be recognized with participation in a minimum of 150 min (2.5 h) of moderate intensity exercise per week, and overweight and obese adults should progressively increase to this initial exercise goal. However, there may be advantages to progressively increasing exercise to 200-300 min (3.3-5 h) of exercise per week, as recent scientific evidence indicates that this level of exercise facilitates the long-term maintenance of weight loss. The addition of resistance exercise to a weight loss intervention will increase strength and function but may not attenuate the loss of fat-free mass typically observed with reductions in total energy intake and loss of body weight. When medically indicated, pharmacotherapy may be used for weight loss, but pharmacotherapy appears to be most effective when used in combination with modifications of both eating and exercise behaviors. The American College of Sports Medicine recommends that the strategies outlined in this position paper be incorporated into interventions targeting weight loss and the prevention of weight regain for adults.

753 citations

Journal ArticleDOI
TL;DR: The meaning of physiological ketosis is revisited and whether there are still some preconceived ideas about ketogenic diets, which may be presenting unnecessary barriers to their use as therapeutic tools in the physician's hand are questioned.
Abstract: Very-low-carbohydrate diets or ketogenic diets have been in use since the 1920s as a therapy for epilepsy and can, in some cases, completely remove the need for medication. From the 1960s onwards they have become widely known as one of the most common methods for obesity treatment. Recent work over the last decade or so has provided evidence of the therapeutic potential of ketogenic diets in many pathological conditions, such as diabetes, polycystic ovary syndrome, acne, neurological diseases, cancer and the amelioration of respiratory and cardiovascular disease risk factors. The possibility that modifying food intake can be useful for reducing or eliminating pharmaceutical methods of treatment, which are often lifelong with significant side effects, calls for serious investigation. This review revisits the meaning of physiological ketosis in the light of this evidence and considers possible mechanisms for the therapeutic actions of the ketogenic diet on different diseases. The present review also questions whether there are still some preconceived ideas about ketogenic diets, which may be presenting unnecessary barriers to their use as therapeutic tools in the physician’s hand.

582 citations

Journal ArticleDOI
TL;DR: The data indicate that older men do respond with an enhanced hormonal profile in the early phase of a resistance training program, but the response is different from that of younger men.
Abstract: To examine the adaptations of the endocrine system to heavy-resistance training in younger vs. older men, two groups of men (30 and 62 yr old) participated in a 10-wk periodized strength-power training program. Blood was obtained before, immediately after, and 5, 15, and 30 min after exercise at rest before and after training and at rest at -3, 0, 6, and 10 wk for analysis of total testosterone, free testosterone, cortisol, growth hormone, lactate, and ACTH analysis. Resting values for insulin-like growth factor (IGF)-I and IGF-binding protein-3 were determined before and after training. A heavy-resistance exercise test was used to evaluate the exercise-induced responses (4 sets of 10-repetition maximum squats with 90 s of rest between sets). Squat strength and thigh muscle cross-sectional area increased for both groups. The younger group demonstrated higher total and free testosterone and IGF-I than the older men, training-induced increases in free testosterone at rest and with exercise, and increases in resting IGF-binding protein-3. With training the older group demonstrated a significant increase in total testosterone in response to exercise stress along with significant decreases in resting cortisol. These data indicate that older men do respond with an enhanced hormonal profile in the early phase of a resistance training program, but the response is different from that of younger men.

487 citations

Journal ArticleDOI
TL;DR: Both neural adaptations and the capacity of the skeletal muscle to undergo training-induced hypertrophy even in older people explain the gains observed in maximal force in older men, while rapid force production capacity recorded during the isometric knee extension action remained unaltered during the present mixed strength training program.
Abstract: Effects of a 10-week progressive strength training program composed of a mixture of exercises for increasing muscle mass, maximal peak force, and explosive strength (rapid force production) were examined in 8 young (YM) (29+/-5 yrs) and 10 old (OM) (61+/-4 yrs) men. Electromyographic activity, maximal bilateral isometric peak force, and maximal rate of force development (RFD) of the knee extensors, muscle cross-sectional area (CSA) of the quadriceps femoris (QF), muscle fiber proportion, and fiber areas of types I, IIa, IIb, and IIab of the vastus lateralis were evaluated. Maximal and explosive strength values remained unaltered in both groups during a 3-week control period with no training preceding the strength training. After the 10-week training period, maximal isometric peak force increased from 1311+/-123 N by 15.6% (p <.05) in YM and from 976+/-168 N by 16.5% (p <.01) in OM. The pretraining RFD values of 4049+/-791 N*s(-1) in YM and 2526+/-1197 N*s(-1) in OM remained unaltered. Both groups showed significant increases (p < .05) in the averaged maximum IEMGs of the vastus muscles. The CSA of the QF increased from 90.3+/-7.9 cm2 in YM by 12.2% (p <.05) and from 74.7+/-7.8 cm2 in OM by 8.5% (p <.001). No changes occurred in the muscle fiber distribution of type I during the training, whereas the proportion of subtype IIab increased from 2% to 6% (p < .05) in YM and that of type IIb decreased in both YM from 25% to 16% (p < .01) and in OM from 15% to 6% (p < .05). The mean fiber area of type I increased after the 10-week training in YM (p < .001) and OM (p < .05) as well as that of type IIa in both YM (p < .01) and OM (p < .01). The individual percentage values for type I fibers were inversely correlated with the individual changes recorded during the training in the muscle CSA of the QF (r=-.56, p < .05). The present results suggest that both neural adaptations and the capacity of the skeletal muscle to undergo training-induced hypertrophy even in older people explain the gains observed in maximal force in older men, while rapid force production capacity recorded during the isometric knee extension action remained unaltered during the present mixed strength training program.

431 citations


Cited by
More filters
01 Jan 2014
TL;DR: These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, treatment goals, and tools to evaluate the quality of care.
Abstract: XI. STRATEGIES FOR IMPROVING DIABETES CARE D iabetes is a chronic illness that requires continuing medical care and patient self-management education to prevent acute complications and to reduce the risk of long-term complications. Diabetes care is complex and requires that many issues, beyond glycemic control, be addressed. A large body of evidence exists that supports a range of interventions to improve diabetes outcomes. These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, treatment goals, and tools to evaluate the quality of care. While individual preferences, comorbidities, and other patient factors may require modification of goals, targets that are desirable for most patients with diabetes are provided. These standards are not intended to preclude more extensive evaluation and management of the patient by other specialists as needed. For more detailed information, refer to Bode (Ed.): Medical Management of Type 1 Diabetes (1), Burant (Ed): Medical Management of Type 2 Diabetes (2), and Klingensmith (Ed): Intensive Diabetes Management (3). The recommendations included are diagnostic and therapeutic actions that are known or believed to favorably affect health outcomes of patients with diabetes. A grading system (Table 1), developed by the American Diabetes Association (ADA) and modeled after existing methods, was utilized to clarify and codify the evidence that forms the basis for the recommendations. The level of evidence that supports each recommendation is listed after each recommendation using the letters A, B, C, or E.

9,618 citations

Journal ArticleDOI
TL;DR: The evidence reviewed in this Position Stand is generally consistent with prior American College of Sports Medicine statements on the types and amounts of physical activity recommended for older adults as well as the recently published 2008 Physical Activity Guidelines for Americans.
Abstract: The purpose of this Position Stand is to provide an overview of issues critical to understanding the importance of exercise and physical activity in older adult populations. The Position Stand is divided into three sections: Section 1 briefly reviews the structural and functional changes that characterize normal human aging, Section 2 considers the extent to which exercise and physical activity can influence the aging process, and Section 3 summarizes the benefits of both long-term exercise and physical activity and shorter-duration exercise programs on health and functional capacity. Although no amount of physical activity can stop the biological aging process, there is evidence that regular exercise can minimize the physiological effects of an otherwise sedentary lifestyle and increase active life expectancy by limiting the development and progression of chronic disease and disabling conditions. There is also emerging evidence for significant psychological and cognitive benefits accruing from regular exercise participation by older adults. Ideally, exercise prescription for older adults should include aerobic exercise, muscle strengthening exercises, and flexibility exercises. The evidence reviewed in this Position Stand is generally consistent with prior American College of Sports Medicine statements on the types and amounts of physical activity recommended for older adults as well as the recently published 2008 Physical Activity Guidelines for Americans. All older adults should engage in regular physical activity and avoid an inactive lifestyle.

4,264 citations

Journal Article
TL;DR: In this article, the optimal characteristics of strength-specific programs include the use of concentric (CON), eccentric (ECC), and isometric muscle actions and the performance of bilateral and unilateral single and multiple-joint exercises.
Abstract: In order to stimulate further adaptation toward specific training goals, progressive resistance training (RT) protocols are necessary The optimal characteristics of strength-specific programs include the use of concentric (CON), eccentric (ECC), and isometric muscle actions and the performance of bilateral and unilateral single- and multiple-joint exercises In addition, it is recommended that strength programs sequence exercises to optimize the preservation of exercise intensity (large before small muscle group exercises, multiple-joint exercises before single-joint exercises, and higher-intensity before lower-intensity exercises) For novice (untrained individuals with no RT experience or who have not trained for several years) training, it is recommended that loads correspond to a repetition range of an 8-12 repetition maximum (RM) For intermediate (individuals with approximately 6 months of consistent RT experience) to advanced (individuals with years of RT experience) training, it is recommended that individuals use a wider loading range from 1 to 12 RM in a periodized fashion with eventual emphasis on heavy loading (1-6 RM) using 3- to 5-min rest periods between sets performed at a moderate contraction velocity (1-2 s CON; 1-2 s ECC) When training at a specific RM load, it is recommended that 2-10% increase in load be applied when the individual can perform the current workload for one to two repetitions over the desired number The recommendation for training frequency is 2-3 d·wk -1 for novice training, 3-4 d·wk -1 for intermediate training, and 4-5 d·wk -1 for advanced training Similar program designs are recommended for hypertrophy training with respect to exercise selection and frequency For loading, it is recommended that loads corresponding to 1-12 RM be used in periodized fashion with emphasis on the 6-12 RM zone using 1- to 2-min rest periods between sets at a moderate velocity Higher volume, multiple-set programs are recommended for maximizing hypertrophy Progression in power training entails two general loading strategies: 1) strength training and 2) use of light loads (0-60% of 1 RM for lower body exercises; 30-60% of 1 RM for upper body exercises) performed at a fast contraction velocity with 3-5 min of rest between sets for multiple sets per exercise (three to five sets) It is also recommended that emphasis be placed on multiple-joint exercises especially those involving the total body For local muscular endurance training, it is recommended that light to moderate loads (40-60% of 1 RM) be performed for high repetitions (>15) using short rest periods (<90 s) In the interpretation of this position stand as with prior ones, recommendations should be applied in context and should be contingent upon an individual's target goals, physical capacity, and training status

3,421 citations

Journal ArticleDOI
TL;DR: Knee motion and knee loading during a landing task are predictors of anterior cruciate ligament injury risk in female athletes and may help develop simpler measures of neuromuscular control that can be used to direct female athletes to more effective, targeted interventions.
Abstract: BackgroundFemale athletes participating in high-risk sports suffer anterior cruciate ligament injury at a 4- to 6-fold greater rate than do male athletes.HypothesisPrescreened female athletes with subsequent anterior cruciate ligament injury will demonstrate decreased neuromuscular control and increased valgus joint loading, predicting anterior cruciate ligament injury risk.Study DesignCohort study; Level of evidence, 2.MethodsThere were 205 female athletes in the high-risk sports of soccer, basketball, and volleyball prospectively measured for neuromuscular control using 3-dimensional kinematics (joint angles) and joint loads using kinetics (joint moments) during a jump-landing task. Analysis of variance as well as linear and logistic regression were used to isolate predictors of risk in athletes who subsequently ruptured the anterior cruciate ligament.ResultsNine athletes had a confirmed anterior cruciate ligament rupture; these 9 had significantly different knee posture and loading compared to the 196 ...

2,997 citations

Journal ArticleDOI
TL;DR: In order to stimulate further adaptation toward a specific training goal(s), progression in the type of resistance training protocol used is necessary and emphasis should be placed on multiple-joint exercises, especially those involving the total body.
Abstract: In order to stimulate further adaptation toward a specific training goal(s), progression in the type of resistance training protocol used is necessary. The optimal characteristics of strength-specific programs include the use of both concentric and eccentric muscle actions and the performance of both single- and multiple-joint exercises. It is also recommended that the strength program sequence exercises to optimize the quality of the exercise intensity (large before small muscle group exercises, multiple-joint exercises before single-joint exercises, and higher intensity before lower intensity exercises). For initial resistances, it is recommended that loads corresponding to 8-12 repetition maximum (RM) be used in novice training. For intermediate to advanced training, it is recommended that individuals use a wider loading range, from 1-12 RM in a periodized fashion, with eventual emphasis on heavy loading (1-6 RM) using at least 3-min rest periods between sets performed at a moderate contraction velocity (1-2 s concentric, 1-2 s eccentric). When training at a specific RM load, it is recommended that 2-10% increase in load be applied when the individual can perform the current workload for one to two repetitions over the desired number. The recommendation for training frequency is 2-3 d x wk(-1) for novice and intermediate training and 4-5 d x wk(-1) for advanced training. Similar program designs are recommended for hypertrophy training with respect to exercise selection and frequency. For loading, it is recommended that loads corresponding to 1-12 RM be used in periodized fashion, with emphasis on the 6-12 RM zone using 1- to 2-min rest periods between sets at a moderate velocity. Higher volume, multiple-set programs are recommended for maximizing hypertrophy. Progression in power training entails two general loading strategies: 1) strength training, and 2) use of light loads (30-60% of 1 RM) performed at a fast contraction velocity with 2-3 min of rest between sets for multiple sets per exercise. It is also recommended that emphasis be placed on multiple-joint exercises, especially those involving the total body. For local muscular endurance training, it is recommended that light to moderate loads (40-60% of 1 RM) be performed for high repetitions (> 15) using short rest periods (< 90 s). In the interpretation of this position stand, as with prior ones, the recommendations should be viewed in context of the individual's target goals, physical capacity, and training status.

2,845 citations