scispace - formally typeset
Search or ask a question

Showing papers by "Jefferson A. Vaughan published in 2021"


Journal ArticleDOI
TL;DR: In this article, a hierarchical global analysis of haemosporidian infection data from 53,669 individual birds representing 2,445 species world-wide was performed to disentangle potential landscape, climatic and biotic drivers of infection probability.
Abstract: Aim: Macroecological analyses provide valuable insights into factors that influence how parasites are distributed across space and among hosts. Amid large uncertainties that arise when generalizing from local and regional findings, hierarchical approaches applied to global datasets are required to determine whether drivers of parasite infection patterns vary across scales. We assessed global patterns of haemosporidian infections across a broad diversity of avian host clades and zoogeographical realms to depict hotspots of prevalence and to identify possible underlying drivers. Location: Global. Time period: 1994–2019. Major taxa studied: Avian haemosporidian parasites (genera Plasmodium, Haemoproteus, Leucocytozoon and Parahaemoproteus). Methods: We amalgamated infection data from 53,669 individual birds representing 2,445 species world-wide. Spatio-phylogenetic hierarchical Bayesian models were built to disentangle potential landscape, climatic and biotic drivers of infection probability while accounting for spatial context and avian host phylogenetic relationships. Results: Idiosyncratic responses of the three most common haemosporidian genera to climate, habitat, host relatedness and host ecological traits indicated marked variation in host infection rates from local to global scales. Notably, host ecological drivers, such as migration distance for Plasmodium and Parahaemoproteus, exhibited predominantly varying or even opposite effects on infection rates across regions, whereas climatic effects on infection rates were more consistent across realms. Moreover, infections in some low-prevalence realms were disproportionately concentrated in a few local hotspots, suggesting that regional-scale variation in habitat and microclimate might influence transmission, in addition to global drivers. Main conclusions: Our hierarchical global analysis supports regional-scale findings showing the synergistic effects of landscape, climate and host ecological traits on parasite transmission for a cosmopolitan and diverse group of avian parasites. Our results underscore the need to account for such interactions, in addition to possible variation in drivers across regions, to produce the robust inference required to predict changes in infection risk under future scenarios.

35 citations


Journal ArticleDOI
TL;DR: Compared infection and dissemination rates in Culex pipiens L. mosquitoes that fed on birds with and without MF infections that had been infected with West Nile virus (WNV), there were no differences in infection or dissemination rates among mosquitoes that ingested viremic blood from a bird with or without microfilaremia.
Abstract: Microfilariae (MF) are the immature stages of filarial nematode parasites and inhabit the blood and dermis of all classes of vertebrates, except fish. Concurrent ingestion of MF and arboviruses by mosquitoes can enhance mosquito transmission of virus compared to when virus is ingested alone. Shortly after being ingested, MF penetrate the mosquito's midgut and may introduce virus into the mosquito's hemocoel, creating a disseminated viral infection much sooner than normal. This phenomenon is known as microfilarial enhancement. Both American Robins and Common Grackles harbor MF-that is, Eufilaria sp. and Chandlerella quiscali von Linstow (Spirurida: Onchocercidae), respectively. We compared infection and dissemination rates in Culex pipiens L. mosquitoes that fed on birds with and without MF infections that had been infected with West Nile virus (WNV). At moderate viremias, about 107 plaque-forming units (pfu)/ml of blood, there were no differences in infection or dissemination rates among mosquitoes that ingested viremic blood from a bird with or without microfilaremia. At high viremias, >108.5 pfu/ml, mosquitoes feeding on a microfilaremic Grackle with concurrent viremia had significantly higher infection and dissemination rates than mosquitoes fed on viremic Grackles without microfilaremia. Microfilarial enhancement depends on the specific virus, MF, and mosquito species examined. How virus is introduced into the hemocoel by MF differs between the avian/WNV systems described here (i.e., leakage) and various arboviruses with MF of the human filarid, Brugia malayi (Brug) (Spirurida: Onchocercidae) (i.e., cotransport). Additional studies are needed to determine if other avian species and their MF are involved in the microfilarial enhancement of WNV in nature.

1 citations