scispace - formally typeset
Search or ask a question
Author

Jefferson A. Vaughan

Bio: Jefferson A. Vaughan is an academic researcher from University of North Dakota. The author has contributed to research in topics: Population & Anopheles gambiae. The author has an hindex of 23, co-authored 53 publications receiving 1632 citations. Previous affiliations of Jefferson A. Vaughan include United States Department of the Army & Johns Hopkins University.


Papers
More filters
Journal ArticleDOI
TL;DR: Prior blood feeding accelerated digestion of the infective blood meals and subtly altered susceptibility to infection with P. falciparum made all experimental groups equally susceptible to infection, however, when gametocyte fertility was low, accelerated digestion had a detrimental effect on the transition of ookinetes to oocysts.
Abstract: We examined the relative susceptibilities of Anopheles gambiae Giles of different physiological ages to infection with cultured Plasmodium falciparum (Welch). Cohorts of mosquitoes were divided into three groups; one was fed uninfected blood on day 3 after emergence (i.e., one prior blood meal); another on days 3 and 7 after emergence (i.e., two prior blood meals); and a control group was maintained on sucrose. On days 10 to 12 after emergence, mosquitoes were fed human blood containing P. falciparum gametocytes. Prior blood feeding accelerated digestion of the infective blood meals and subtly altered susceptibility to infection with P. falciparum . When gametocyte cultures were highly fertile, all experimental groups were equally susceptible to infection. However, when gametocyte fertility was low, accelerated digestion had a detrimental effect on the transition of ookinetes to oocysts. Accelerated digestion may raise the threshold density of ookinetes required for the successful conversion of ookinetes to oocysts.

13 citations

Journal ArticleDOI
TL;DR: The new species is similar to two North-American species, Rhabdias ranae and R. americanus, by presence of two lateral pseudolabia, each with two inner submedian protuberances, but differs from both by relative length and shape of the tail and by its distribution and host specificity.
Abstract: Rhabdias kongmongthaensis sp. n. is described based on specimens found in the lungs of the tree frog Polypedates leucomystax (Gravenhorst) (Amphibia: Rhacophoridae) from Kanchanaburi Province, western Thailand. The new species is similar to two North-American species, Rhabdias ranae and R. americanus, by presence of two lateral pseudolabia, each with two inner submedian protuberances. R. kongmongthaensis differs from both species by relative length and shape of the tail, and by its distribution and host specificity. Presence of lateral pseudolabia distinguishes the new species from the geographically closest Rhabdias species as well as from those parasitizing other rhacophorid frogs.

13 citations

Journal ArticleDOI
TL;DR: For the first time detected Neorickettsia in a digenean from Egypt, the African continent as a whole, the Philippines, Thailand and Vietnam based on PCR and sequencing evidence, these findings suggest that further surveys from theAfrican continent, SE Asia, and island countries are likely to reveal new NeorICKettsia lineages as well as new digenea host associations.

12 citations

Journal ArticleDOI
TL;DR: Interestingly, Neorickettsia sp.
Abstract: Neorickettsia spp. are bacterial endosymbionts of parasitic flukes (Digenea) that also have the potential to infect and cause disease (e.g., Sennetsu fever) in the vertebrate hosts of the fluke. One of the largest gaps in our knowledge of Neorickettsia biology is the very limited information available regarding the localization of the bacterial endosymbiont within its digenean host. In this study, we used indirect immunofluorescence microscopy to visualize Neorickettsia sp. within several life cycle stages of the digenean Plagiorchis elegans Individual sporocysts, cercariae, metacercariae, and adults of P. elegans naturally infected with Neorickettsia sp. were obtained from our laboratory-maintained life cycle, embedded, sectioned, and prepared for indirect immunofluorescence microscopy using anti-Neorickettsia risticiihorse serum as the primary antibody. Neorickettsiasp. was found within the tegument of sporocysts, throughout cercarial embryos (germ balls) and fully formed cercariae (within the sporocysts), throughout metacercariae, and within the tegument, parenchyma, vitellaria, uteri, testes, cirrus sacs, and eggs of adults. Interestingly, Neorickettsia sp. was not found within the ovarian tissue. This suggests that vertical transmission of Neorickettsia within adult digeneans occurs via the incorporation of infected vitelline cells into the egg rather than direct infection of the ooplasm of the oocyte, as has been described for other bacterial endosymbionts of invertebrates (e.g.,Rickettsia and Wolbachia).

11 citations

Journal ArticleDOI
TL;DR: In this article, the authors compared different techniques used to estimate ookinete densities in mosquitoes and found that immunofluorescent staining was the most sensitive, accurate, and the only method that enabled unequivocal detection of zygotes.
Abstract: The ookinete is the key determinant of infection within the mosquito vector, yet there are few population studies of ookinetes in nature. This investigation compared different techniques used to estimate ookinete densities in mosquitoes. Laboratory-reared Anopheles dirus mosquitoes were fed on gametocytemic blood drawn from 7 Plasmodium vivax patients at a malaria clinic in Mae Sot, Thailand. At 20–26 hr, bloodmeals were excised. Three techniques were evaluated, i.e., hemacytometer counts under phase-contrast microscope, Giemsa staining of bloodmeal smears, and immunofluorescent staining with a monoclonal antibody specific against the 25-kDa antigen expressed on the surface of P. vivax zygotes and ookinetes. Additional mosquitoes were dissected at day 10 for oocysts. The hemacytometer method was the simplest and quickest method but lacked precision at low ookinete densities. Immunofluorescent staining was the most sensitive, accurate, and the only method that enabled unequivocal detection of zygotes. Bloo...

11 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Calreticulin is a highly versatile lectin-like chaperone, and it participates during the synthesis of a variety of molecules, including ion channels, surface receptors, integrins and transporters.
Abstract: The endoplasmic reticulum (ER) plays a critical role in the synthesis and chaperoning of membrane-associated and secreted proteins. The membrane is also an important site of Ca(2+) storage and release. Calreticulin is a unique ER luminal resident protein. The protein affects many cellular functions, both in the ER lumen and outside of the ER environment. In the ER lumen, calreticulin performs two major functions: chaperoning and regulation of Ca(2+) homoeostasis. Calreticulin is a highly versatile lectin-like chaperone, and it participates during the synthesis of a variety of molecules, including ion channels, surface receptors, integrins and transporters. The protein also affects intracellular Ca(2+) homoeostasis by modulation of ER Ca(2+) storage and transport. Studies on the cell biology of calreticulin revealed that the ER membrane is a very dynamic intracellular compartment affecting many aspects of cell physiology.

767 citations

Journal ArticleDOI
10 Apr 2008-Nature
TL;DR: It is shown that holidays lead to a 20–29% reduction in the rate at which influenza is transmitted to children, but that they have no detectable effect on the contact patterns of adults, as well as predicting the effect of school closure during a pandemic.
Abstract: The threat posed by the highly pathogenic H5N1 influenza virus requires public health authorities to prepare for a human pandemic. Although pre-pandemic vaccines and antiviral drugs might significantly reduce illness rates, their stockpiling is too expensive to be practical for many countries. Consequently, alternative control strategies, based on non-pharmaceutical interventions, are a potentially attractive policy option. School closure is the measure most often considered. The high social and economic costs of closing schools for months make it an expensive and therefore controversial policy, and the current absence of quantitative data on the role of schools during influenza epidemics means there is little consensus on the probable effectiveness of school closure in reducing the impact of a pandemic. Here, from the joint analysis of surveillance data and holiday timing in France, we quantify the role of schools in influenza epidemics and predict the effect of school closure during a pandemic. We show that holidays lead to a 20-29% reduction in the rate at which influenza is transmitted to children, but that they have no detectable effect on the contact patterns of adults. Holidays prevent 16-18% of seasonal influenza cases (18-21% in children). By extrapolation, we find that prolonged school closure during a pandemic might reduce the cumulative number of cases by 13-17% (18-23% in children) and peak attack rates by up to 39-45% (47-52% in children). The impact of school closure would be reduced if it proved difficult to maintain low contact rates among children for a prolonged period.

656 citations

Journal ArticleDOI
TL;DR: How control measures that aim to reduce malaria transmission, such as mass drug administration and a transmission-blocking vaccine, might better be deployed are drawn together to show how the application of molecular techniques has led to the identification of submicroscopic gametocyte carriage and to a reassessment of the human infectious reservoir.
Abstract: Malaria remains a major cause of morbidity and mortality in the tropics, with Plasmodium falciparum responsible for the majority of the disease burden and P. vivax being the geographically most widely distributed cause of malaria. Gametocytes are the sexual-stage parasites that infect Anopheles mosquitoes and mediate the onward transmission of the disease. Gametocytes are poorly studied despite this crucial role, but with a recent resurgence of interest in malaria elimination, the study of gametocytes is in vogue. This review highlights the current state of knowledge with regard to the development and longevity of P. falciparum and P. vivax gametocytes in the human host and the factors influencing their distribution within endemic populations. The evidence for immune responses, antimalarial drugs, and drug resistance influencing infectiousness to mosquitoes is reviewed. We discuss how the application of molecular techniques has led to the identification of submicroscopic gametocyte carriage and to a reassessment of the human infectious reservoir. These components are drawn together to show how control measures that aim to reduce malaria transmission, such as mass drug administration and a transmission-blocking vaccine, might better be deployed.

651 citations

Journal Article
02 Jan 2009-Science
TL;DR: Comparative analysis with the free-living, model nematode Caenorhabditis elegans revealed that, despite these genes having maintained little conservation of local synteny during ∼350 million years of evolution, they largely remain in linkage on chromosomal units.
Abstract: Parasitic nematodes that cause elephantiasis and river blindness threaten hundreds of millions of people in the developing world. We have sequenced the ∼90 megabase (Mb) genome of the human filarial parasite Brugia malayi and predict ∼11,500 protein coding genes in 71 Mb of robustly assembled sequence. Comparative analysis with the free-living, model nematode Caenorhabditis elegans revealed that, despite these genes having maintained little conservation of local synteny during ∼350 million years of evolution, they largely remain in linkage on chromosomal units. More than 100 conserved operons were identified. Analysis of the predicted proteome provides evidence for adaptations of B. malayi to niches in its human and vector hosts and insights into the molecular basis of a mutualistic relationship with its Wolbachia endosymbiont. These findings offer a foundation for rational drug design.

576 citations

Journal ArticleDOI
TL;DR: Evidence is presented that the proportion of patients who have successive relapses is relatively constant and that the factor which activates hypnozoites and leads to regular interval relapse in vivax malaria is the systemic febrile illness itself, which has important implications for the assessment of radical treatment efficacy and for malaria control and elimination.
Abstract: Plasmodium vivax is a major cause of febrile illness in endemic areas of Asia, Central and South America, and the horn of Africa. Plasmodium vivax infections are characterized by relapses of malaria arising from persistent liver stages of the parasite (hypnozoites) which can be prevented only by 8-aminoquinoline anti-malarials. Tropical P. vivax relapses at three week intervals if rapidly eliminated anti-malarials are given for treatment, whereas in temperate regions and parts of the sub-tropics P. vivax infections are characterized either by a long incubation or a long-latency period between illness and relapse - in both cases approximating 8-10 months. The epidemiology of the different relapse phenotypes has not been defined adequately despite obvious relevance to malaria control and elimination. The number of sporozoites inoculated by the anopheline mosquito is an important determinant of both the timing and the number of relapses. The intervals between relapses display a remarkable periodicity which has not been explained. Evidence is presented that the proportion of patients who have successive relapses is relatively constant and that the factor which activates hypnozoites and leads to regular interval relapse in vivax malaria is the systemic febrile illness itself. It is proposed that in endemic areas a large proportion of the population harbours latent hypnozoites which can be activated by a systemic illness such as vivax or falciparum malaria. This explains the high rates of vivax following falciparum malaria, the high proportion of heterologous genotypes in relapses, the higher rates of relapse in people living in endemic areas compared with artificial infection studies, and, by facilitating recombination between different genotypes, contributes to P. vivax genetic diversity particularly in low transmission settings. Long-latency P. vivax phenotypes may be more widespread and more prevalent than currently thought. These observations have important implications for the assessment of radical treatment efficacy and for malaria control and elimination.

525 citations