scispace - formally typeset
Search or ask a question
Author

Jeffrey A. Engelman

Bio: Jeffrey A. Engelman is an academic researcher from Novartis. The author has contributed to research in topics: Cancer & Lung cancer. The author has an hindex of 103, co-authored 263 publications receiving 59279 citations. Previous affiliations of Jeffrey A. Engelman include Beth Israel Deaconess Medical Center & Harvard University.


Papers
More filters
Journal ArticleDOI
18 May 2007-Science
TL;DR: It is proposed that MET amplification may promote drug resistance in other ERBB-driven cancers as well after it was found that amplification of MET causes gefitinib resistance by driving ERBB3 (HER3)–dependent activation of PI3K, a pathway thought to be specific to EGFR/ERBB family receptors.
Abstract: The epidermal growth factor receptor (EGFR) kinase inhibitors gefitinib and erlotinib are effective treatments for lung cancers with EGFR activating mutations, but these tumors invariably develop drug resistance. Here, we describe a gefitinib-sensitive lung cancer cell line that developed resistance to gefitinib as a result of focal amplification of the MET proto-oncogene. inhibition of MET signaling in these cells restored their sensitivity to gefitinib. MET amplification was detected in 4 of 18 (22%) lung cancer specimens that had developed resistance to gefitinib or erlotinib. We find that amplification of MET causes gefitinib resistance by driving ERBB3 (HER3)–dependent activation of PI3K, a pathway thought to be specific to EGFR/ERBB family receptors. Thus, we propose that MET amplification may promote drug resistance in other ERBB-driven cancers as well.

4,218 citations

Journal ArticleDOI
TL;DR: The inhibition of ALK in lung tumors with the ALK rearrangement resulted in tumor shrinkage or stable disease in most patients, and the drug resulted in grade 1 or 2 gastrointestinal side effects.
Abstract: Background Oncogenic fusion genes consisting of EML4 and anaplastic lymphoma kinase (ALK) are present in a subgroup of non–small-cell lung cancers, representing 2 to 7% of such tumors. We explored the therapeutic efficacy of inhibiting ALK in such tumors in an early-phase clinical trial of crizotinib (PF-02341066), an orally available small-molecule inhibitor of the ALK tyrosine kinase. Methods After screening tumor samples from approximately 1500 patients with non–small-cell lung cancer for the presence of ALK rearrangements, we identified 82 patients with advanced ALK-positive disease who were eligible for the clinical trial. Most of the patients had received previous treatment. These patients were enrolled in an expanded cohort study instituted after phase 1 dose escalation had established a recommended crizotinib dose of 250 mg twice daily in 28-day cycles. Patients were assessed for adverse events and response to therapy. Results Patients with ALK rearrangements tended to be younger than those without the rearrangements, and most of the patients had little or no exposure to tobacco and had adenocarcinomas. At a mean treatment duration of 6.4 months, the overall response rate was 57% (47 of 82 patients, with 46 confirmed partial responses and 1 confirmed complete response); 27 patients (33%) had stable disease. A total of 63 of 82 patients (77%) were continuing to receive crizotinib at the time of data cutoff, and the estimated probability of 6-month progression-free survival was 72%, with no median for the study reached. The drug resulted in grade 1 or 2 (mild) gastrointestinal side effects. Conclusions The inhibition of ALK in lung tumors with the ALK rearrangement resulted in tumor shrinkage or stable disease in most patients. (Funded by Pfizer and others; ClinicalTrials.gov number, NCT00585195.)

4,091 citations

Journal ArticleDOI
TL;DR: Detailed genetic and histological analysis of 37 patients with drug-resistant non–small cell lung cancers carrying EGFR mutations provides new insights into the shifting sands of drug resistance evolution in lung cancers and suggests that serial biopsies may be essential in the quest to reverse or even prevent the development ofdrug resistance.
Abstract: Lung cancers harboring mutations in the epidermal growth factor receptor (EGFR) respond to EGFR tyrosine kinase inhibitors, but drug resistance invariably emerges. To elucidate mechanisms of acquired drug resistance, we performed systematic genetic and histological analyses of tumor biopsies from 37 patients with drug-resistant non–small cell lung cancers (NSCLCs) carrying EGFR mutations. All drug-resistant tumors retained their original activating EGFR mutations, and some acquired known mechanisms of resistance including the EGFR T790M mutation or MET gene amplification. Some resistant cancers showed unexpected genetic changes including EGFR amplification and mutations in the PIK3CA gene, whereas others underwent a pronounced epithelial-to-mesenchymal transition. Surprisingly, five resistant tumors (14%) transformed from NSCLC into small cell lung cancer (SCLC) and were sensitive to standard SCLC treatments. In three patients, serial biopsies revealed that genetic mechanisms of resistance were lost in the absence of the continued selective pressure of EGFR inhibitor treatment, and such cancers were sensitive to a second round of treatment with EGFR inhibitors. Collectively, these results deepen our understanding of resistance to EGFR inhibitors and underscore the importance of repeatedly assessing cancers throughout the course of the disease.

2,972 citations

Journal ArticleDOI
TL;DR: In light of the recent advances in understanding of the function of PI3Ks in the pathogenesis of diabetes and cancer, the exciting therapeutic opportunities for targeting this pathway to treat these diseases are discussed.
Abstract: Phosphatidylinositol 3-kinases (PI3Ks) evolved from a single enzyme that regulates vesicle trafficking in unicellular eukaryotes into a family of enzymes that regulate cellular metabolism and growth in multicellular organisms. In this review, we examine how the PI3K pathway has evolved to control these fundamental processes, and how this pathway is in turn regulated by intricate feedback and crosstalk mechanisms. In light of the recent advances in our understanding of the function of PI3Ks in the pathogenesis of diabetes and cancer, we discuss the exciting therapeutic opportunities for targeting this pathway to treat these diseases.

2,935 citations

Journal ArticleDOI
TL;DR: The therapeutic potential of drugs targeting PI3K–Akt signalling for the treatment of cancer is discussed and the advantages and drawbacks of different treatment strategies for targeting this pathway are focused on.
Abstract: There are ample genetic and laboratory studies that suggest the PI3K-Akt pathway is vital to the growth and survival of cancer cells. Inhibitors targeting this pathway are entering the clinic at a rapid pace. In this Review, the therapeutic potential of drugs targeting PI3K-Akt signalling for the treatment of cancer is discussed. I focus on the advantages and drawbacks of different treatment strategies for targeting this pathway, the cancers that might respond best to these therapies and the challenges and limitations that confront their clinical development.

2,277 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
22 May 2009-Science
TL;DR: It is proposed that the metabolism of cancer cells, and indeed all proliferating cells, is adapted to facilitate the uptake and incorporation of nutrients into the biomass needed to produce a new cell.
Abstract: In contrast to normal differentiated cells, which rely primarily on mitochondrial oxidative phosphorylation to generate the energy needed for cellular processes, most cancer cells instead rely on aerobic glycolysis, a phenomenon termed “the Warburg effect.” Aerobic glycolysis is an inefficient way to generate adenosine 5′-triphosphate (ATP), however, and the advantage it confers to cancer cells has been unclear. Here we propose that the metabolism of cancer cells, and indeed all proliferating cells, is adapted to facilitate the uptake and incorporation of nutrients into the biomass (e.g., nucleotides, amino acids, and lipids) needed to produce a new cell. Supporting this idea are recent studies showing that (i) several signaling pathways implicated in cell proliferation also regulate metabolic pathways that incorporate nutrients into biomass; and that (ii) certain cancer-associated mutations enable cancer cells to acquire and metabolize nutrients in a manner conducive to proliferation rather than efficient ATP production. A better understanding of the mechanistic links between cellular metabolism and growth control may ultimately lead to better treatments for human cancer.

12,380 citations

Journal ArticleDOI
TL;DR: Gefit inib is superior to carboplatin-paclitaxel as an initial treatment for pulmonary adenocarcinoma among nonsmokers or former light smokers in East Asia and the presence in the tumor of a mutation of the EGFR gene is a strong predictor of a better outcome with gefitinib.
Abstract: METHODS In this phase 3, open-label study, we randomly assigned previously untreated patients in East Asia who had advanced pulmonary adenocarcinoma and who were nonsmokers or former light smokers to receive gefitinib (250 mg per day) (609 patients) or carboplatin (at a dose calculated to produce an area under the curve of 5 or 6 mg per milliliter per minute) plus paclitaxel (200 mg per square meter of body-surface area) (608 patients). The primary end point was progression-free survival. RESULTS The 12-month rates of progression-free survival were 24.9% with gefitinib and 6.7% with carboplatin–paclitaxel. The study met its primary objective of showing the noninferiority of gefitinib and also showed its superiority, as compared with carboplatin– paclitaxel, with respect to progression-free survival in the intention-to-treat population (hazard ratio for progression or death, 0.74; 95% confidence interval [CI], 0.65 to 0.85; P<0.001). In the subgroup of 261 patients who were positive for the epidermal growth factor receptor gene (EGFR) mutation, progression-free survival was significantly longer among those who received gefitinib than among those who received carboplatin–paclitaxel (hazard ratio for progression or death, 0.48; 95% CI, 0.36 to 0.64; P<0.001), whereas in the subgroup of 176 patients who were negative for the mutation, progression-free survival was significantly longer among those who received carboplatin–paclitaxel (hazard ratio for progression or death with gefitinib, 2.85; 95% CI, 2.05 to 3.98; P<0.001). The most common adverse events were rash or acne (in 66.2% of patients) and diarrhea (46.6%) in the gefitinib group and neurotoxic effects (69.9%), neutropenia (67.1%), and alopecia (58.4%) in the carboplatin–paclitaxel group. CONCLUSIONS Gefitinib is superior to carboplatin–paclitaxel as an initial treatment for pulmonary adenocarcinoma among nonsmokers or former light smokers in East Asia. The presence in the tumor of a mutation of the EGFR gene is a strong predictor of a better outcome with gefitinib. (ClinicalTrials.gov number, NCT00322452.)

7,246 citations

Journal ArticleDOI
13 Oct 2000-Cell
TL;DR: Understanding of the complex signaling networks downstream from RTKs and how alterations in these networks are translated into cellular responses provides an important context for therapeutically countering the effects of pathogenic RTK mutations in cancer and other diseases.

7,056 citations

Journal ArticleDOI
TL;DR: Pembrolizumab is a humanized monoclonal antibody against programmed death 1 (PD-1) that has antitumor activity in advanced non-small-cell lung cancer (NSCLC), with increased activity in tumors that express PD-L1 as mentioned in this paper.
Abstract: BackgroundPembrolizumab is a humanized monoclonal antibody against programmed death 1 (PD-1) that has antitumor activity in advanced non–small-cell lung cancer (NSCLC), with increased activity in tumors that express programmed death ligand 1 (PD-L1). MethodsIn this open-label, phase 3 trial, we randomly assigned 305 patients who had previously untreated advanced NSCLC with PD-L1 expression on at least 50% of tumor cells and no sensitizing mutation of the epidermal growth factor receptor gene or translocation of the anaplastic lymphoma kinase gene to receive either pembrolizumab (at a fixed dose of 200 mg every 3 weeks) or the investigator’s choice of platinum-based chemotherapy. Crossover from the chemotherapy group to the pembrolizumab group was permitted in the event of disease progression. The primary end point, progression-free survival, was assessed by means of blinded, independent, central radiologic review. Secondary end points were overall survival, objective response rate, and safety. ResultsMedi...

7,053 citations