scispace - formally typeset
Search or ask a question
Author

Jeffrey Dean

Other affiliations: University of Washington, World Health Organization, Microsoft  ...read more
Bio: Jeffrey Dean is an academic researcher from Google. The author has contributed to research in topics: Deep learning & Web search query. The author has an hindex of 83, co-authored 242 publications receiving 179031 citations. Previous affiliations of Jeffrey Dean include University of Washington & World Health Organization.


Papers
More filters
Proceedings ArticleDOI
Jeffrey Dean1
09 Feb 2009
TL;DR: This talk will discuss the evolution of Google's hardware infrastructure and information retrieval systems and some of the design challenges that arise from ever-increasing demands in all of these dimensions.
Abstract: Building and operating large-scale information retrieval systems used by hundreds of millions of people around the world provides a number of interesting challenges. Designing such systems requires making complex design tradeoffs in a number of dimensions, including (a) the number of user queries that must be handled per second and the response latency to these requests, (b) the number and size of various corpora that are searched, (c) the latency and frequency with which documents are updated or added to the corpora, and (d) the quality and cost of the ranking algorithms that are used for retrieval. In this talk I will discuss the evolution of Google's hardware infrastructure and information retrieval systems and some of the design challenges that arise from ever-increasing demands in all of these dimensions. I will also describe how we use various pieces of distributed systems infrastructure when building these retrieval systems. Finally, I will describe some future challenges and open research problems in this area.

209 citations

Patent
Jeffrey Dean1, Sanjay Ghemawat1
18 Jun 2004
TL;DR: In this paper, a large-scale data processing system and method includes one or more application-independent map modules configured to read input data and to apply at least one application-specific map operation to the input data to produce intermediate data values, wherein the map operation is automatically parallelized across multiple processors in the parallel processing environment.
Abstract: A large-scale data processing system and method includes one or more application-independent map modules configured to read input data and to apply at least one application-specific map operation to the input data to produce intermediate data values, wherein the map operation is automatically parallelized across multiple processors in the parallel processing environment A plurality of intermediate data structures are used to store the intermediate data values One or more application-independent reduce modules are configured to retrieve the intermediate data values and to apply at least one application-specific reduce operation to the intermediate data values to provide output data

193 citations

Posted Content
TL;DR: In this paper, a convex combination of the class label embedding vectors is used to map images into the semantic embedding space via convex combinations of the embeddings, which requires no additional training.
Abstract: Several recent publications have proposed methods for mapping images into continuous semantic embedding spaces. In some cases the embedding space is trained jointly with the image transformation. In other cases the semantic embedding space is established by an independent natural language processing task, and then the image transformation into that space is learned in a second stage. Proponents of these image embedding systems have stressed their advantages over the traditional way{} classification framing of image understanding, particularly in terms of the promise for zero-shot learning -- the ability to correctly annotate images of previously unseen object categories. In this paper, we propose a simple method for constructing an image embedding system from any existing way{} image classifier and a semantic word embedding model, which contains the $ $ class labels in its vocabulary. Our method maps images into the semantic embedding space via convex combination of the class label embedding vectors, and requires no additional training. We show that this simple and direct method confers many of the advantages associated with more complex image embedding schemes, and indeed outperforms state of the art methods on the ImageNet zero-shot learning task.

192 citations

Proceedings Article
06 Aug 2017
TL;DR: In this article, a sequence-to-sequence model is used to predict which subsets of operations in a TensorFlow graph should run on which of the available devices, and the execution time of the predicted subsets is then used as the reward signal to optimize the parameters of the sequence to sequence model.
Abstract: The past few years have witnessed a growth in size and computational requirements for training and inference with neural networks Currently, a common approach to address these requirements is to use a heterogeneous distributed environment with a mixture of hardware devices such as CPUs and GPUs Importantly, the decision of placing parts of the neural models on devices is often made by human experts based on simple heuristics and intuitions In this paper, we propose a method which learns to optimize device placement for TensorFlow computational graphs Key to our method is the use of a sequence-to-sequence model to predict which subsets of operations in a TensorFlow graph should run on which of the available devices The execution time of the predicted placements is then used as the reward signal to optimize the parameters of the sequence-to-sequence model Our main result is that on Inception-V3 for ImageNet classification, and on RNN LSTM, for language modeling and neural machine translation, our model finds non-trivial device placements that outperform hand-crafted heuristics and traditional algorithmic methods

189 citations

Journal ArticleDOI
TL;DR: The augmented reality microscope (ARM) overlays AI-based information onto the current view of the sample in real time, enabling seamless integration of AI into routine workflows and will remove barriers towards the use of AI designed to improve the accuracy and efficiency of cancer diagnosis.
Abstract: The microscopic assessment of tissue samples is instrumental for the diagnosis and staging of cancer, and thus guides therapy. However, these assessments demonstrate considerable variability and many regions of the world lack access to trained pathologists. Though artificial intelligence (AI) promises to improve the access and quality of healthcare, the costs of image digitization in pathology and difficulties in deploying AI solutions remain as barriers to real-world use. Here we propose a cost-effective solution: the augmented reality microscope (ARM). The ARM overlays AI-based information onto the current view of the sample in real time, enabling seamless integration of AI into routine workflows. We demonstrate the utility of ARM in the detection of metastatic breast cancer and the identification of prostate cancer, with latency compatible with real-time use. We anticipate that the ARM will remove barriers towards the use of AI designed to improve the accuracy and efficiency of cancer diagnosis.

174 citations


Cited by
More filters
Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Proceedings Article
Sergey Ioffe1, Christian Szegedy1
06 Jul 2015
TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Abstract: Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs. Our method draws its strength from making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization, and in some cases eliminates the need for Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.82% top-5 test error, exceeding the accuracy of human raters.

30,843 citations