scispace - formally typeset
Search or ask a question
Author

Jeffrey Dean

Other affiliations: University of Washington, World Health Organization, Microsoft  ...read more
Bio: Jeffrey Dean is an academic researcher from Google. The author has contributed to research in topics: Deep learning & Web search query. The author has an hindex of 83, co-authored 242 publications receiving 179031 citations. Previous affiliations of Jeffrey Dean include University of Washington & World Health Organization.


Papers
More filters
Patent
24 Sep 2003
TL;DR: In this article, the authors identify target information (also referred to as ad serving constraints) or candidate targeting information for an advertisement is identified by extracting topics or concepts from, and/or generating topics based on, ad information, such as information from a Web page to which an ad is linked (or some other Web page of interest to the ad or advertiser).
Abstract: Targeting information (also referred to as ad “serving constraints”) or candidate targeting information for an advertisement is identified. Targeting information may be identified by extracting topics or concepts from, and/or generating topics or concepts based on, ad information, such as information from a Web page to which an ad is linked (or some other Web page of interest to the ad or advertiser). The topics or concepts may be relevant queries associated with the Web page of interest, clusters, etc.

39 citations

Journal ArticleDOI
TL;DR: The feasibility of using machine learning to automatically populate a review of systems of all symptoms discussed in an encounter between a patient and a clinician is assessed.
Abstract: This study assesses the feasibility of using machine learning to automatically populate a review of systems of all symptoms discussed in an encounter between a patient and a clinician.

37 citations

Patent
13 Aug 2004
TL;DR: In this article, a multi-tiered mapping scheme is proposed to enable multi-stage query scoring, including snippet generation, through incremental document reconstruction facilitated by a multilevel mapping scheme.
Abstract: The disclosed embodiments enable multi-stage query scoring, including “snippet” generation, through incremental document reconstruction facilitated by a multi-tiered mapping scheme. The mapping scheme includes a first mapping between unique tokens contained in a set of documents and unique global token identifiers (e.g., 32-bit integers) contained in a global-lexicon (i.e., dictionary). The mapping scheme also includes a second mapping between the global token identifiers and a set of fixed-length local token identifiers (e.g., 8-bit integers) contained in one or more mini-lexicons (i.e., sub-dictionaries). Each mini-lexicon is associated with a range of token positions in the tokenized documents. The first and second mappings are used to encode/decode documents into local token identifiers having fixed widths which can be compactly stored in the tokenspace repository. The use of fixed-length local token identifiers allows for fast and efficient decoding of tokenized documents.

37 citations

Patent
Greg S. Corrado1, Kai Chen1, Jeffrey Dean1, Samy Bengio1, Rajat Monga1, Matthieu Devin1 
15 Aug 2013

36 citations

01 Jan 2012
TL;DR: In this paper, the authors discuss more details regarding the algorithm, its implementation, test set for 3D-transformed faces, experimental results for parameter sensitivity, and further visualizations for the learned neurons.
Abstract: In this appendix, we discuss more details regarding the algorithm, its implementation, test set for 3D-transformed faces, experimental results for parameter sensitivity. We also present further visualizations for the learned neurons.

36 citations


Cited by
More filters
Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Proceedings Article
Sergey Ioffe1, Christian Szegedy1
06 Jul 2015
TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Abstract: Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs. Our method draws its strength from making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization, and in some cases eliminates the need for Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.82% top-5 test error, exceeding the accuracy of human raters.

30,843 citations