scispace - formally typeset
Search or ask a question
Author

Jeffrey E. Saffitz

Bio: Jeffrey E. Saffitz is an academic researcher from Beth Israel Deaconess Medical Center. The author has contributed to research in topics: Cardiomyopathy & Connexin. The author has an hindex of 88, co-authored 344 publications receiving 28726 citations. Previous affiliations of Jeffrey E. Saffitz include Suburban Hospital & Case Western Reserve University.


Papers
More filters
Journal ArticleDOI
TL;DR: Modifications of the Task Force Criteria for the clinical diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia represent a working framework to improve the diagnosis and management of this condition.
Abstract: Background— In 1994, an International Task Force proposed criteria for the clinical diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) that facilitated recognition and ...

2,400 citations

Journal ArticleDOI
TL;DR: The criteria for the clinical diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia have been modified to incorporate new knowledge and technology to improve diagnostic sensitivity, but with the important requisite of maintaining diagnostic specificity.
Abstract: Background In 1994, an International Task Force proposed criteria for the clinical diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) that facilitated recognition and interpretation of the frequently nonspecific clinical features of ARVC/D. This enabled confirmatory clinical diagnosis in index cases through exclusion of phenocopies and provided a standard on which clinical research and genetic studies could be based. Structural, histological, electrocardiographic, arrhythmic, and familial features of the disease were incorporated into the criteria, subdivided into major and minor categories according to the specificity of their association with ARVC/D. At that time, clinical experience with ARVC/D was dominated by symptomatic index cases and sudden cardiac death victims–the overt or severe end of the disease spectrum. Consequently, the 1994 criteria were highly specific but lacked sensitivity for early and familial disease. Methods and Results Revision of the diagnostic criteria provides guidance on the role of emerging diagnostic modalities and advances in the genetics of ARVC/D. The criteria have been modified to incorporate new knowledge and technology to improve diagnostic sensitivity, but with the important requisite of maintaining diagnostic specificity. The approach of classifying structural, histological, electrocardiographic, arrhythmic, and genetic features of the disease as major and minor criteria has been maintained. In this modification of the Task Force criteria, quantitative criteria are proposed and abnormalities are defined on the basis of comparison with normal subject data. Conclusions The present modifications of the Task Force Criteria represent a working framework to improve the diagnosis and management of this condition. Clinical Trial Registration clinicaltrials.gov Identifier: NCT00024505.

1,546 citations

Journal ArticleDOI
TL;DR: It is found that PGC-1 gene expression is induced in the mouse heart after birth and in response to short-term fasting, conditions known to increase cardiac mitochondrial energy production.
Abstract: Cardiac mitochondrial function is altered in a variety of inherited and acquired cardiovascular diseases. Recent studies have identified the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) as a regulator of mitochondrial function in tissues specialized for thermogenesis, such as brown adipose. We sought to determine whether PGC-1 controlled mitochondrial biogenesis and energy-producing capacity in the heart, a tissue specialized for high-capacity ATP production. We found that PGC-1 gene expression is induced in the mouse heart after birth and in response to short-term fasting, conditions known to increase cardiac mitochondrial energy production. Forced expression of PGC-1 in cardiac myocytes in culture induced the expression of nuclear and mitochondrial genes involved in multiple mitochondrial energy-transduction/energy-production pathways, increased cellular mitochondrial number, and stimulated coupled respiration. Cardiac-specific overexpression of PGC-1 in transgenic mice resulted in uncontrolled mitochondrial proliferation in cardiac myocytes leading to loss of sarcomeric structure and a dilated cardiomyopathy. These results identify PGC-1 as a critical regulatory molecule in the control of cardiac mitochondrial number and function in response to energy demands.

1,223 citations

Journal ArticleDOI
TL;DR: It is demonstrated that PGC-1α is necessary for appropriate adaptation to the metabolic and physiologic stressors of postnatal life.
Abstract: The gene encoding the transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) was targeted in mice. PGC-1α null (PGC-1α−/−) mice were viable. However, extensive phenotyping revealed multi-system abnormalities indicative of an abnormal energy metabolic phenotype. The postnatal growth of heart and slow-twitch skeletal muscle, organs with high mitochondrial energy demands, is blunted in PGC-1α−/− mice. With age, the PGC-1α−/− mice develop abnormally increased body fat, a phenotype that is more severe in females. Mitochondrial number and respiratory capacity is diminished in slow-twitch skeletal muscle of PGC-1α−/− mice, leading to reduced muscle performance and exercise capacity. PGC-1α−/− mice exhibit a modest diminution in cardiac function related largely to abnormal control of heart rate. The PGC-1α−/− mice were unable to maintain core body temperature following exposure to cold, consistent with an altered thermogenic response. Following short-term starvation, PGC-1α−/− mice develop hepatic steatosis due to a combination of reduced mitochondrial respiratory capacity and an increased expression of lipogenic genes. Surprisingly, PGC-1α−/− mice were less susceptible to diet-induced insulin resistance than wild-type controls. Lastly, vacuolar lesions were detected in the central nervous system of PGC-1α−/− mice. These results demonstrate that PGC-1α is necessary for appropriate adaptation to the metabolic and physiologic stressors of postnatal life.

911 citations

Journal ArticleDOI
TL;DR: It is demonstrated that fatty acid uptake/utilization mismatch in the heart leads to accumulation of lipid species toxic to cardiac myocytes, and a novel mouse model of metabolic cardiomyopathy is established to provide insight into the role of perturbations in myocardial lipid metabolism in the pathogenesis of inherited and acquired forms of heart failure.
Abstract: Inherited and acquired cardiomyopathies are associated with marked intracellular lipid accumulation in the heart. To test the hypothesis that mismatch between myocardial fatty acid uptake and utilization leads to the accumulation of cardiotoxic lipid species, and to establish a mouse model of metabolic cardiomyopathy, we generated transgenic mouse lines that overexpress long-chain acyl-CoA synthetase in the heart (MHC-ACS). This protein plays an important role in vectorial fatty acid transport across the plasma membrane. MHC-ACS mice demonstrate cardiac-restricted expression of the transgene and marked cardiac myocyte triglyceride accumulation. Lipid accumulation is associated with initial cardiac hypertrophy, followed by the development of left-ventricular dysfunction and premature death. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining and cytochrome c release in transgenic hearts suggest that cardiac myocyte death occurs, in part, by lipid-induced programmed cell death. Taken together, our data demonstrate that fatty acid uptake/utilization mismatch in the heart leads to accumulation of lipid species toxic to cardiac myocytes. This novel mouse model will provide insight into the role of perturbations in myocardial lipid metabolism in the pathogenesis of inherited and acquired forms of heart failure.

731 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Authors/Task Force Members: Piotr Ponikowski* (Chairperson) (Poland), Adriaan A. Voors* (Co-Chair person) (The Netherlands), Stefan D. Anker (Germany), Héctor Bueno (Spain), John G. F. Cleland (UK), Andrew J. S. Coats (UK)

13,400 citations

Journal ArticleDOI
05 Apr 2001-Nature
TL;DR: It is indicated that locally delivered bone marrow cells can generate de novo myocardium, ameliorating the outcome of coronary artery disease.
Abstract: Myocardial infarction leads to loss of tissue and impairment of cardiac performance The remaining myocytes are unable to reconstitute the necrotic tissue, and the post-infarcted heart deteriorates with time1 Injury to a target organ is sensed by distant stem cells, which migrate to the site of damage and undergo alternate stem cell differentiation2,3,4,5; these events promote structural and functional repair6,7,8 This high degree of stem cell plasticity prompted us to test whether dead myocardium could be restored by transplanting bone marrow cells in infarcted mice We sorted lineage-negative (Lin-) bone marrow cells from transgenic mice expressing enhanced green fluorescent protein9 by fluorescence-activated cell sorting on the basis of c-kit expression10 Shortly after coronary ligation, Lin- c-kitPOS cells were injected in the contracting wall bordering the infarct Here we report that newly formed myocardium occupied 68% of the infarcted portion of the ventricle 9 days after transplanting the bone marrow cells The developing tissue comprised proliferating myocytes and vascular structures Our studies indicate that locally delivered bone marrow cells can generate de novo myocardium, ameliorating the outcome of coronary artery disease

5,331 citations

Journal ArticleDOI
TL;DR: The Statistical Update represents the most up-to-date statistics related to heart disease, stroke, and the cardiovascular risk factors listed in the AHA's My Life Check - Life’s Simple 7, which include core health behaviors and health factors that contribute to cardiovascular health.
Abstract: Each chapter listed in the Table of Contents (see next page) is a hyperlink to that chapter. The reader clicks the chapter name to access that chapter. Each chapter listed here is a hyperlink. Click on the chapter name to be taken to that chapter. Each year, the American Heart Association (AHA), in conjunction with the Centers for Disease Control and Prevention, the National Institutes of Health, and other government agencies, brings together in a single document the most up-to-date statistics related to heart disease, stroke, and the cardiovascular risk factors listed in the AHA’s My Life Check - Life’s Simple 7 (Figure1), which include core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure [BP], and glucose control) that contribute to cardiovascular health. The Statistical Update represents …

5,102 citations

Journal ArticleDOI
15 Dec 2006-Cell
TL;DR: RSV's effects were associated with an induction of genes for oxidative phosphorylation and mitochondrial biogenesis and were largely explained by an RSV-mediated decrease in P GC-1alpha acetylation and an increase in PGC-1 alpha activity.

3,740 citations

Journal ArticleDOI
19 Sep 2003-Cell
TL;DR: The existence of Lin(-) c-kit(POS) cells with the properties of cardiac stem cells, which are self-renewing, clonogenic, and multipotent, giving rise to myocytes, smooth muscle, and endothelial cells are reported.

3,651 citations