scispace - formally typeset
Search or ask a question
Author

Jeffrey H. Shapiro

Bio: Jeffrey H. Shapiro is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Photon & Quantum key distribution. The author has an hindex of 65, co-authored 395 publications receiving 17401 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The general target characterization for coherent laser radars is shown to be a two-frequency bistatic scattering-amplitude matrix, used to develop target-signature expressions for pulsed imager and 3-D imager systems and problems that may arise in test bed or reflectometer measurements of target reflectivity are discussed.
Abstract: The general target characterization for coherent laser radars is shown to be a two-frequency bistatic scattering-amplitude matrix. This matrix is used to develop target-signature expressions for pulsed imager and 3-D imager systems. The relationships between the scattering matrix and the more familiar bidirectional reflectance, diffuse reflectivity, and multiplicative target models are explored. Problems that may arise in test bed or reflectometer measurements of target reflectivity are discussed, and test bed calibration-plate measurement data are reported. The latter will indicate the viability of diffuse reflectivity for rough-surface targets.

51 citations

Journal ArticleDOI
TL;DR: In this article, a system architecture for achieving long-distance, high-fidelity teleportation and long-duration quantum storage is proposed, which uses polarization-entangled photons and trapped-atom quantum memories and is compatible with transmission over standard telecommunication fibre.
Abstract: A system architecture for achieving long-distance, high-fidelity teleportation and long-duration quantum storage is proposed. It uses polarization-entangled photons and trapped-atom quantum memories and is compatible with transmission over standard telecommunication fibre. An extension of this architecture permits long-distance transmission and storage of Greenberger-Horne-Zeilinger states.

50 citations

Journal ArticleDOI
TL;DR: It is shown that the sum-rate upper bound is achievable with a coherent-state encoding and that the entire region is asymptotically achievable in the limit of large mean input photon numbers.
Abstract: The maximum rates for reliably transmitting classical information over bosonic multiple-access channels (MACs) are derived when the transmitters are restricted to coherent-state encodings. Inner and outer bounds for the ultimate capacity region of the bosonic MAC are also presented. It is shown that the sum-rate upper bound is achievable with a coherent-state encoding and that the entire region is asymptotically achievable in the limit of large mean input photon numbers.

49 citations

Journal ArticleDOI
TL;DR: Although Q-OCT is not expected to replace its eminently successful classical cousin, optical coherence tomography (OCT), it does offer some advantages as a biological imaging paradigm, including greater axial resolution and higher signal-to-background ratio.
Abstract: We discuss the development of quantum optical coherence tomography (Q-OCT), an imaging modality with a number of potential applications. Although Q-OCT is not expected to replace its eminently successful classical cousin, optical coherence tomography (OCT), it does offer some advantages as a biological imaging paradigm. These include greater axial resolution and higher signal-to-background ratio, immunity to dispersion that can lead to deeper subsurface penetration, and nondestructive probing of light-sensitive samples. Q-OCT also serves as a quantum template for constructing classical systems that mimic its salutary properties.

48 citations

Journal ArticleDOI
TL;DR: Tsang et al. as mentioned in this paper designed homodyne phase-locked loops that can measure the temporal phase with quantum-limited accuracy, and showed that postprocessing can further improve the estimation performance if delay is allowed in the estimation.
Abstract: We consider the continuous-time version of our recently proposed quantum theory of optical temporal phase and instantaneous frequency [M. Tsang et al., Phys. Rev. A 78, 053820 (2008)]. Using a state-variable approach to estimation, we design homodyne phase-locked loops that can measure the temporal phase with quantum-limited accuracy. We show that postprocessing can further improve the estimation performance if delay is allowed in the estimation. We also investigate the fundamental uncertainties in the simultaneous estimation of harmonic-oscillator position and momentum via continuous optical phase measurements from the classical estimation theory perspective. In the case of delayed estimation, we find that the inferred uncertainty product can drop below that allowed by the Heisenberg uncertainty relation. Although this result seems counterintuitive, we argue that it does not violate any basic principle of quantum mechanics.

48 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

01 Jan 2004
TL;DR: Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance and describes numerous important application areas such as image based rendering and digital libraries.
Abstract: From the Publisher: The accessible presentation of this book gives both a general view of the entire computer vision enterprise and also offers sufficient detail to be able to build useful applications. Users learn techniques that have proven to be useful by first-hand experience and a wide range of mathematical methods. A CD-ROM with every copy of the text contains source code for programming practice, color images, and illustrative movies. Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance. Topics are discussed in substantial and increasing depth. Application surveys describe numerous important application areas such as image based rendering and digital libraries. Many important algorithms broken down and illustrated in pseudo code. Appropriate for use by engineers as a comprehensive reference to the computer vision enterprise.

3,627 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate the ability to multiplex and transfer data between twisted beams of light with different amounts of orbital angular momentum, which provides new opportunities for increasing the data capacity of free-space optical communications links.
Abstract: Researchers demonstrate the ability to multiplex and transfer data between twisted beams of light with different amounts of orbital angular momentum — a development that provides new opportunities for increasing the data capacity of free-space optical communications links.

3,556 citations