scispace - formally typeset
Search or ask a question
Author

Jeffrey H. Shapiro

Bio: Jeffrey H. Shapiro is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Photon & Quantum key distribution. The author has an hindex of 65, co-authored 395 publications receiving 17401 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a theoretical construct for fourth-order interference between the signal and the idler beams of a parametric downconverter is presented, which relies on Gaussian-state field correlations, which were previously used to characterize quadrature-noise squeezing produced by an optical parametric amplifier and nonclassical twin-beam generation in an opticalparametric oscillator.
Abstract: A theoretical construct is presented for fourth-order interference between the signal and the idler beams of a parametric downconverter. Previous quantum treatments of fourth-order interference have employed correlated single-photon wave packets. The introduced approach, however, relies on Gaussian-state field correlations, which were previously used to characterize quadrature-noise squeezing produced by an optical parametric amplifier and nonclassical twin-beam generation in an optical parametric oscillator. Three principal benefits accrue from the correlation-function formalism. First, the quantum theory of fourth-order interference is unified with that for the other nonclassical effects of χ(2) interactions, i.e., squeezing and twin-beam production. Second, the semiclassical photodetection limit on Gaussian-state fourth-order interference is established; a purely quantum effect can be claimed at fringe visibilities substantially below the 50% level. Finally, both photon-coincidence counting (within the low-photon-flux regime) and intensity interferometry (in the high-photon-flux limit) are easily analyzed within a common framework.

48 citations

Journal ArticleDOI
TL;DR: It is proved that universal quantum computation can be realized-using only linear optics and χ^{(2)} (three-wave mixing) interactions-in any (n+1)-dimensional qudit basis of the n-pump-photon subspace, and qutrit-basis universality is demonstrated.
Abstract: We prove that universal quantum computation can be realized---using only linear optics and ${\ensuremath{\chi}}^{(2)}$ (three-wave mixing) interactions---in any ($n+1$)-dimensional qudit basis of the $n$-pump-photon subspace. First, we exhibit a strictly universal gate set for the qubit basis in the one-pump-photon subspace. Next, we demonstrate qutrit-basis universality by proving that ${\ensuremath{\chi}}^{(2)}$ Hamiltonians and photon-number operators generate the full $\mathfrak{u}(3)$ Lie algebra in the two-pump-photon subspace, and showing how the qutrit controlled-$Z$ gate can be implemented with only linear optics and ${\ensuremath{\chi}}^{(2)}$ interactions. We then use proof by induction to obtain our general qudit result. Our induction proof relies on coherent photon injection or subtraction, a technique enabled by ${\ensuremath{\chi}}^{(2)}$ interaction between the encoding modes and ancillary modes. Finally, we show that coherent photon injection is more than a conceptual tool, in that it offers a route to preparing high-photon-number Fock states from single-photon Fock states.

47 citations

Journal ArticleDOI
TL;DR: Spectrally unentangled biphotons are generated with an inferred heralded-state spectral purity of 99%, the highest to date without any spectral filtering, by pulsed spontaneous parametric downconversion in a custom-fabricated periodically-poled KTiOPO4 crystal under extended Gaussian phase-matching conditions.
Abstract: Spectrally unentangled biphotons with high single-spatiotemporal-mode purity are highly desirable for many quantum information processing tasks. We generate biphotons with an inferred heralded-state spectral purity of 99%, the highest to date without any spectral filtering, by pulsed spontaneous parametric downconversion in a custom-fabricated periodically-poled KTiOPO$_4$ crystal under extended Gaussian phase-matching conditions. To efficiently characterize the joint spectral intensity of the generated biphotons at high spectral resolution, we employ a commercially available dispersion compensation module (DCM) with a dispersion equivalent to 100 km of standard optical fiber and with an insertion loss of only 2.8 dB. Compared with the typical method of using two temperature-stabilized equal-length fibers that incurs an insertion loss of 20 dB per fiber, the DCM approach achieves high spectral resolution in a much shorter measurement time. Because the dispersion amount and center wavelengths of DCMs can be easily customized, spectral characterization in a wide range of quantum photonic applications should benefit significantly from this technique.

46 citations

Journal ArticleDOI
TL;DR: Lu et al. as mentioned in this paper analyzed the fundamental quantum limit of the resolution of an optical imaging system from the perspective of the detection problem of deciding whether the optical field in the image plane is generated by one incoherent on-axis source with brightness or by two incoherent sources that are symmetrically disposed about the optical axis.
Abstract: We analyze the fundamental quantum limit of the resolution of an optical imaging system from the perspective of the detection problem of deciding whether the optical field in the image plane is generated by one incoherent on-axis source with brightness $$\epsilon$$ or by two $$\epsilon {\mathrm{/}}2$$ -brightness incoherent sources that are symmetrically disposed about the optical axis. Using the exact thermal-state model of the field, we derive the quantum Chernoff bound for the detection problem, which specifies the optimum rate of decay of the error probability with increasing number of collected photons that is allowed by quantum mechanics. We then show that recently proposed linear-optic schemes approach the quantum Chernoff bound—the method of binary spatial-mode demultiplexing (B-SPADE) is quantum-optimal for all values of separation, while a method using image inversion interferometry (SLIVER) is near-optimal for sub-Rayleigh separations. We then simplify our model using a low-brightness approximation that is very accurate for optical microscopy and astronomy, derive quantum Chernoff bounds conditional on the number of photons detected, and show the optimality of our schemes in this conditional detection paradigm. For comparison, we analytically demonstrate the superior scaling of the Chernoff bound for our schemes with source separation relative to that of spatially resolved direct imaging. Our schemes have the advantages over the quantum-optimal (Helstrom) measurement in that they do not involve joint measurements over multiple modes, and that they do not require the angular separation for the two-source hypothesis to be given a priori and can offer that information as a bonus in the event of a successful detection. Two schemes to distinguish between emitters can nearly reach the best possible resolution more easily than the known optimal method. The accuracy with which two light sources can be identified is normally taken from the Rayleigh criterion, which is a classical calculation. By performing quantum measurements the classical limit can be beaten, but the protocol necessary to achieve the optimal result involves difficult-to-perform joint measurements and knowledge of the source separation. Xiao-Ming Lu from Hangzhou Dianzi University and the National University of Singapore, with colleagues from the USA, has shown that two previously-introduced measurement schemes called B-SPADE and SLIVER can achieve nearly the same accuracy while being much simpler to perform. Potential applications of the result include identifying binary stars and identifying separate emitters in medical fluorescence imaging.

46 citations

Journal ArticleDOI
TL;DR: Zhuang et al. as discussed by the authors show that the sum-frequency generation receiver achieves QI's full 6 dB advantage over optimum classical operation for Rayleigh-fading targets, but this performance is subexponential: its error probability is lower than the classical system's.
Abstract: Quantum illumination (QI) is an entanglement-enhanced sensing system whose performance advantage over a comparable classical system survives its usage in an entanglement-breaking scenario plagued by loss and noise. In particular, QI's error-probability exponent for discriminating between equally likely hypotheses of target absence or presence is 6 dB higher than that of the optimum classical system using the same transmitted power. This performance advantage, however, presumes that the target return, when present, has known amplitude and phase, a situation that seldom occurs in light detection and ranging (lidar) applications. At lidar wavelengths, most target surfaces are sufficiently rough that their returns are speckled, i.e., they have Rayleigh-distributed amplitudes and uniformly distributed phases. QI's optical parametric amplifier receiver---which affords a 3 dB better-than-classical error-probability exponent for a return with known amplitude and phase---fails to offer any performance gain for Rayleigh-fading targets. We show that the sum-frequency generation receiver [Zhuang et al., Phys. Rev. Lett. 118, 040801 (2017)]---whose error-probability exponent for a nonfading target achieves QI's full 6 dB advantage over optimum classical operation---outperforms the classical system for Rayleigh-fading targets. In this case, QI's advantage is subexponential: its error probability is lower than the classical system's by a factor of $1/ln(M\overline{\ensuremath{\kappa}}{N}_{S}/{N}_{B})$, when $M\overline{\ensuremath{\kappa}}{N}_{S}/{N}_{B}\ensuremath{\gg}1$, with $M\ensuremath{\gg}1$ being the QI transmitter's time-bandwidth product, ${N}_{S}\ensuremath{\ll}1$ its brightness, $\overline{\ensuremath{\kappa}}$ the target return's average intensity, and ${N}_{B}$ the background light's brightness.

45 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

01 Jan 2004
TL;DR: Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance and describes numerous important application areas such as image based rendering and digital libraries.
Abstract: From the Publisher: The accessible presentation of this book gives both a general view of the entire computer vision enterprise and also offers sufficient detail to be able to build useful applications. Users learn techniques that have proven to be useful by first-hand experience and a wide range of mathematical methods. A CD-ROM with every copy of the text contains source code for programming practice, color images, and illustrative movies. Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance. Topics are discussed in substantial and increasing depth. Application surveys describe numerous important application areas such as image based rendering and digital libraries. Many important algorithms broken down and illustrated in pseudo code. Appropriate for use by engineers as a comprehensive reference to the computer vision enterprise.

3,627 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate the ability to multiplex and transfer data between twisted beams of light with different amounts of orbital angular momentum, which provides new opportunities for increasing the data capacity of free-space optical communications links.
Abstract: Researchers demonstrate the ability to multiplex and transfer data between twisted beams of light with different amounts of orbital angular momentum — a development that provides new opportunities for increasing the data capacity of free-space optical communications links.

3,556 citations