scispace - formally typeset
Search or ask a question
Author

Jeffrey H. Shapiro

Bio: Jeffrey H. Shapiro is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Photon & Quantum key distribution. The author has an hindex of 65, co-authored 395 publications receiving 17401 citations.


Papers
More filters
Proceedings ArticleDOI
29 Nov 2004
TL;DR: This work analyzes error probability bounds for optical communication links operating in the nearfield regime, utilizing on-off keying and a coherent or direct detection receiver, and obtains bounds on the ergodic capacity of a near-field atmospheric optical link with local oscillator shot- noise dominated coherent detection, or shot-noise limited direct detection.
Abstract: Most atmospheric optical links are set up to operate in the far-field power transfer regime, in which diffraction spread is the dominant effect on the beam, resulting in very weak power coupling between the transmitter and the receiver. However, it is also possible to establish geometries such that the link operates in the near-field regime, where, in the absence of turbulence, it is possible to focus the beam onto the receiver with almost perfect power coupling. Work on the performance of near-field atmospheric optical communication systems is scarce in existing literature, perhaps due to increased complexity in prescribed models. We analyze error probability bounds for optical communication links operating in the nearfield regime, utilizing on-off keying (OOK) and a coherent or direct detection receiver. In addition, we obtain bounds on the ergodic capacity of a near-field atmospheric optical link with local oscillator shot-noise dominated coherent detection, or shot-noise limited direct detection.

8 citations

Posted Content
15 Jun 2009
TL;DR: In this article, the authors introduce a new form for the bosonic channel minimal output entropy conjecture, namely that among states with equal input entropy, the thermal states are the ones that have the smallest increase in entropy when sent through a infinitesimal thermalizing channel.
Abstract: We introduce a new form for the bosonic channel minimal output entropy conjecture, namely that among states with equal input entropy, the thermal states are the ones that have slightest increase in entropy when sent through a infinitesimal thermalizing channel We then detail a strategy to prove the conjecture through variational techniques This would lead to the calculation of the classical capacity of a communication channel subject to thermal noise Our strategy detects input thermal ensembles as possible solutions for the optimal encoding of the channel, lending support to the conjecture However, it does not seem to be able to exclude the possibility that other input ensembles can attain the channel capacity

8 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate a 15.65 GHz frequency shift for classical and non-classical light using a commercially available quadrature phase-shift keying modulator.
Abstract: Deterministic frequency manipulation of single photons is an essential tool for quantum communications and quantum networks. We demonstrate a 15.65 GHz frequency shift for classical and nonclassical light using a commercially available quadrature phase-shift keying modulator. The measured spectrum of frequency-shifted single photons indicates a high carrier-to-sideband ratio of 30 dB. We illustrate our frequency shifter’s utility in quantum photonics by performing Hong–Ou–Mandel quantum interference between two photons whose initial frequency spectra overlap only partially, and showing visibility improvement from 62.7 to 89.1% after one of the photons undergoes a corrective frequency shift.

8 citations

Journal ArticleDOI
TL;DR: In this article, the authors calculate the communication capacity of a broadband electromagnetic waveguide as a function of its spatial dimensions and input power, and compare the results with those for the free-space bosonic channel.
Abstract: We calculate the communication capacity of a broadband electromagnetic waveguide as a function of its spatial dimensions and input power. We analyze the two cases in which either all the available modes or only a single directional mode are employed. The results are compared with those for the free-space bosonic channel.

8 citations

Proceedings ArticleDOI
10 Jul 2011
TL;DR: In this paper, a series of field demonstrations of high-bandwidth optical free-space links were performed at MIT Lincoln Laboratory, and the results showed near-unity correlation coefficients in all air-to-ground tests.
Abstract: Since 2008, MIT Lincoln Laboratory has performed a series of field demonstrations of high-bandwidth optical free-space links. Bi-directional scintillation fading measurements have shown near-unity correlation coefficients in all air-to-ground tests.

8 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

01 Jan 2004
TL;DR: Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance and describes numerous important application areas such as image based rendering and digital libraries.
Abstract: From the Publisher: The accessible presentation of this book gives both a general view of the entire computer vision enterprise and also offers sufficient detail to be able to build useful applications. Users learn techniques that have proven to be useful by first-hand experience and a wide range of mathematical methods. A CD-ROM with every copy of the text contains source code for programming practice, color images, and illustrative movies. Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance. Topics are discussed in substantial and increasing depth. Application surveys describe numerous important application areas such as image based rendering and digital libraries. Many important algorithms broken down and illustrated in pseudo code. Appropriate for use by engineers as a comprehensive reference to the computer vision enterprise.

3,627 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate the ability to multiplex and transfer data between twisted beams of light with different amounts of orbital angular momentum, which provides new opportunities for increasing the data capacity of free-space optical communications links.
Abstract: Researchers demonstrate the ability to multiplex and transfer data between twisted beams of light with different amounts of orbital angular momentum — a development that provides new opportunities for increasing the data capacity of free-space optical communications links.

3,556 citations