scispace - formally typeset
Search or ask a question
Author

Jeffrey H. Shapiro

Bio: Jeffrey H. Shapiro is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Photon & Quantum key distribution. The author has an hindex of 65, co-authored 395 publications receiving 17401 citations.


Papers
More filters
Proceedings ArticleDOI
31 May 2009
TL;DR: In this paper, a homodyne phase-locked loop for optical temporal phase and instantaneous frequency measurements at the quantum limit is proposed, using classical estimation techniques, and it is shown that the loop can be used for optical phase estimation.
Abstract: Using classical estimation techniques, we design homodyne phase-locked loops for optical temporal phase and instantaneous frequency measurements at the quantum limit.

3 citations

Posted Content
TL;DR: In this paper, the authors present a roadmap for building a quantum engineering education program to satisfy the need for both quantum-aware and quantum-proficient engineers at the bachelor's level.
Abstract: The rapidly growing quantum information science and engineering (QISE) industry will require both quantum-aware and quantum-proficient engineers at the bachelor's level. We provide a roadmap for building a quantum engineering education program to satisfy this need. For quantum-aware engineers, we describe how to design a first quantum engineering course accessible to all STEM students. For the education and training of quantum-proficient engineers, we detail both a quantum engineering minor accessible to all STEM majors, and a quantum track directly integrated into individual engineering majors. We propose that such programs typically require only three or four newly developed courses that complement existing engineering and science classes available on most larger campuses. We describe a conceptual quantum information science course for implementation at any post-secondary institution, including community colleges and military schools. QISE presents extraordinary opportunities to work towards rectifying issues of inclusivity and equity that continue to be pervasive within engineering. We present a plan to do so and describe how quantum engineering education presents an excellent set of education research opportunities. Finally, we outline a hands-on training plan on quantum hardware, a key component of any quantum engineering program, with a variety of technologies including optics, atoms and ions, cryogenic and solid-state technologies, nanofabrication, and control and readout electronics. Our recommendations provide a flexible framework that can be tailored for academic institutions ranging from teaching and undergraduate-focused two- and four-year colleges to research-intensive universities.

3 citations

Proceedings ArticleDOI
TL;DR: The Laplace method can be applied to obtain expressions for the probability of error in binary recognition as well as more general situations such as target detection and M-ary recognition, which provides insight into how target and sensor parameters affect recognition performance.
Abstract: Automatic target recognition (ATR) performance based on forward-looking infrared (FLIR) and laser radar (LADAR) image sensors is studied for the recognition of ground-based targets with unknown random pose. High signal-to-noise ratio results are obtained by using the Laplace approximation to simplify nuisance integrals which appear in Bayesian likelihood-ratio calculations. This analytical approach applied to simple blocks-world target models and statistical sensor models provides insight into how target and sensor parameters affect recognition performance. The Laplace method used in this paper can be applied to obtain expressions for the probability of error in binary recognition as well as more general situations such as target detection and M-ary recognition. These theoretical results are compared with computer-simulated calculations of the probability of error in binary recognition and sensor fusion scenarios.

3 citations

Journal ArticleDOI
TL;DR: In this article, a coherent state Mach-Zehnder interferometer (MZI) with parity-based phase estimation was shown to achieve SNL scaling in a single measurement, albeit without superresolution.
Abstract: Previous studies [J. Opt. Soc. Am. B27, A170 (2010)JOBPDE0740-322410.1364/JOSAB.27.00A170; J. Appl. Phys.114, 193102 (2013)JAPIAU0021-897910.1063/1.4829016] have asserted that a coherent-state Mach–Zehnder interferometer (MZI) with parity-based phase estimation can achieve superresolution at the shot-noise limit (SNL). We show that these studies have ignored the need for repeated measurements in order to achieve root-mean-square accuracy at the SNL. Consequently, their superresolution claims need major revision. For comparison, we present the performance of a coherent-state MZI that uses dual-homodyne detection and show that it can achieve SNL scaling in a single measurement, albeit without superresolution.

3 citations

Proceedings ArticleDOI
TL;DR: In this article, the authors show that the classical phase-sensitive light produces ghost images most closely mimicking those obtained with biphotons, and derive the spatial resolution, image contrast, and signal-to-noise ratio of a standoff-sensing ghost imager, taking into account target-induced speckle.
Abstract: The theory of partial coherence has a long and storied history in classical statistical optics. The vast majority of this work addresses fields that are statistically stationary in time, hence their complex envelopes only have phase-insensitive correlations. The quantum optics of squeezed-state generation, however, depends on nonlinear interactions producing baseband field operators with phase-insensitive and phase-sensitive correlations. Utilizing quantum light to enhance imaging has been a topic of considerable current interest, much of it involving biphotons, i.e., streams of entangled-photon pairs. Biphotons have been employed for quantum versions of optical coherence tomography, ghost imaging, holography, and lithography. However, their seemingly quantum features have been mimicked with classical-state light, questioning wherein lies the classical-quantum boundary. We have shown, for the case of Gaussian-state light, that this boundary is intimately connected to the theory of phase-sensitive partial coherence. Here we present that theory, contrasting it with the familiar case of phase-insensitive partial coherence, and use it to elucidate the classical-quantum boundary of ghost imaging. We show, both theoretically and experimentally, that classical phase-sensitive light produces ghost images most closely mimicking those obtained with biphotons, and we derive the spatial resolution, image contrast, and signal-to-noise ratio of a standoff-sensing ghost imager, taking into account target-induced speckle.

3 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

01 Jan 2004
TL;DR: Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance and describes numerous important application areas such as image based rendering and digital libraries.
Abstract: From the Publisher: The accessible presentation of this book gives both a general view of the entire computer vision enterprise and also offers sufficient detail to be able to build useful applications. Users learn techniques that have proven to be useful by first-hand experience and a wide range of mathematical methods. A CD-ROM with every copy of the text contains source code for programming practice, color images, and illustrative movies. Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance. Topics are discussed in substantial and increasing depth. Application surveys describe numerous important application areas such as image based rendering and digital libraries. Many important algorithms broken down and illustrated in pseudo code. Appropriate for use by engineers as a comprehensive reference to the computer vision enterprise.

3,627 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate the ability to multiplex and transfer data between twisted beams of light with different amounts of orbital angular momentum, which provides new opportunities for increasing the data capacity of free-space optical communications links.
Abstract: Researchers demonstrate the ability to multiplex and transfer data between twisted beams of light with different amounts of orbital angular momentum — a development that provides new opportunities for increasing the data capacity of free-space optical communications links.

3,556 citations