scispace - formally typeset
Search or ask a question
Author

Jeffrey H. Shapiro

Bio: Jeffrey H. Shapiro is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Photon & Quantum key distribution. The author has an hindex of 65, co-authored 395 publications receiving 17401 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a continuous-time multi-mode model for the input/output fields to/from the nonlinear medium was proposed, in which the full temporal content of the free-field input beams as well as the non-instantaneous response of the medium were taken into account.
Abstract: The weak nonlinear Kerr interaction between single photons and intense laser fields has been recently proposed as a basis for distributed optics-based solutions to few-qubit applications in quantum communication and computation. Here, we analyse the above Kerr interaction by employing a continuous-time multi-mode model for the input/output fields to/from the nonlinear medium. In contrast to previous single-mode treatments of this problem, our analysis takes into account the full temporal content of the free-field input beams as well as the non-instantaneous response of the medium. The main implication of this model, in which the cross-Kerr phase shift on one input is proportional to the photon flux of the other input, is the existence of phase noise terms at the output. We show that these phase noise terms will preclude satisfactory performance of the parity gate proposed by Munro et al (2005 New J. Phys. 7 137).

154 citations

Journal ArticleDOI
TL;DR: The von Neumann entropy at the output of a bosonic channel with thermal noise is analyzed and the minimum out- put entropy conjecture and its stronger (majorization) version are stated and explained.
Abstract: The von Neumann entropy at the output of a bosonic channel with thermal noise is analyzed. Coherent-state inputs are conjectured to minimize this output entropy. Physical and mathematical evidence in support of the conjecture is provided. A stronger conjecture—that output states resulting from coherent-state inputs majorize the output states from other inputs—is also discussed. presented. We also consider a stronger conjecture—that out- put states resulting from coherent-state inputs majorize the output states from other inputs—which, if true, would imply the minimum output entropy conjecture. (Note that the mini- mum output entropy problem was previously treated in (7), which reported some of the results that we will discuss.) Additional supporting evidence for the minimum-entropy conjecture appears in our companion paper (8), where we show that the integer-order Renyi entropies and the Wehrl entropy at the output of the bosonic channel are minimized when the channel input is a coherent state. In Sec. II we present CP maps for the two bosonic chan- nels that will be considered in this paper. The minimum out- put entropy conjecture and its stronger (majorization) version are then stated and explained. In Sec. III we analyze the two channel maps in detail, and develop some useful properties of their output entropies. In Sec. IV we prove the minimum output entropy conjecture for the restricted scenario in which only Gaussian states may be fed into the channel. In Sec. V we present a collection of lower bounds on S. These lower bounds are consistent with the minimum output entropy con- jecture. Moreover, in the low- and high-noise regimes they approach asymptotically the upper bounds from which the conjecture arises. In Sec. VI we obtain necessary conditions on any input state that minimizes the output entropy. We demonstrate, in particular, that every coherent-state input produces an output state that achieves a local minimum of the output entropy. Finally, in Sec. VII we address the stron- ger version of the conjecture by exhibiting some evidence that output states produced by coherent-state inputs majorize all other output states. The paper is structured so that Secs. IV and VII may be read independently. The most technical parts of the derivations have been relegated to the Appendi- ces.

153 citations

Journal ArticleDOI
TL;DR: In this article, the quantum version of the Huygens-Fresnel diffraction integral is reviewed, along with the semiclassical and quantum theories of direct, homodyne, and heterodyne detection.
Abstract: Communication theory applied to lightwave channels is ordinarily carried out using the semiclassical theory of photodetection. Recent development of nonclassical light sources-whose photodetection statistics require the use of quantum theory-plus increasing interest in optics-based approaches to quantum information processing necessitates a thorough understanding of the similarities and distinctions between the semiclassical and quantum theories of optical communications. This paper is addressed to that need, focusing, for convenience, on the free-space communication channel using Gaussian states of light. The quantum version of the Huygens-Fresnel diffraction integral is reviewed, along with the semiclassical and quantum theories of direct, homodyne, and heterodyne detection. Maximally entangled Gaussian state light is used, in conjunction with quantum photodetection theory, to explain the nonclassical effects seen in Hong-Ou-Mandel interferometry and violation of the Clauser-Horne-Shimony-Holt form of Bell's inequality. The classical information capacities of several bosonic channels are reviewed, and shown to exceed what can be achieved using conventional optical receivers.

147 citations

Journal Article
01 Jun 2016-Nature
TL;DR: In this article, an array-specific algorithm was developed to convert coarsely time-binned photon detections to highly accurate scene depth and reflectivity by exploiting both the transverse smoothness and longitudinal sparsity of natural scenes.
Abstract: Reconstructing a scene's 3D structure and reflectivity accurately with an active imaging system operating in low-light-level conditions has wide-ranging applications, spanning biological imaging to remote sensing. Here we propose and experimentally demonstrate a depth and reflectivity imaging system with a single-photon camera that generates high-quality images from ∼1 detected signal photon per pixel. Previous achievements of similar photon efficiency have been with conventional raster-scanning data collection using single-pixel photon counters capable of ∼10-ps time tagging. In contrast, our camera's detector array requires highly parallelized time-to-digital conversions with photon time-tagging accuracy limited to ∼ns. Thus, we develop an array-specific algorithm that converts coarsely time-binned photon detections to highly accurate scene depth and reflectivity by exploiting both the transverse smoothness and longitudinal sparsity of natural scenes. By overcoming the coarse time resolution of the array, our framework uniquely achieves high photon efficiency in a relatively short acquisition time.

146 citations

Journal ArticleDOI
15 Oct 2004
TL;DR: This paper presents recent progress that the MIT/NU team has made, beginning with a review of the teleportation architecture and its loss-limited performance analysis.
Abstract: A team of researchers from the Massachusetts Institute of Technology (MIT) and Northwestern University (NU) is developing a system for long-distance, high- delity qubit tele-portation. Such a system will be required if future quantum computers are to be linked together into a quantum Internet. This paper presents recent progress that the MIT/NU team has made, beginning with a review of the teleportation architecture and its loss-limited performance analysis.

141 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

01 Jan 2004
TL;DR: Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance and describes numerous important application areas such as image based rendering and digital libraries.
Abstract: From the Publisher: The accessible presentation of this book gives both a general view of the entire computer vision enterprise and also offers sufficient detail to be able to build useful applications. Users learn techniques that have proven to be useful by first-hand experience and a wide range of mathematical methods. A CD-ROM with every copy of the text contains source code for programming practice, color images, and illustrative movies. Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance. Topics are discussed in substantial and increasing depth. Application surveys describe numerous important application areas such as image based rendering and digital libraries. Many important algorithms broken down and illustrated in pseudo code. Appropriate for use by engineers as a comprehensive reference to the computer vision enterprise.

3,627 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate the ability to multiplex and transfer data between twisted beams of light with different amounts of orbital angular momentum, which provides new opportunities for increasing the data capacity of free-space optical communications links.
Abstract: Researchers demonstrate the ability to multiplex and transfer data between twisted beams of light with different amounts of orbital angular momentum — a development that provides new opportunities for increasing the data capacity of free-space optical communications links.

3,556 citations