scispace - formally typeset
Search or ask a question
Author

Jeffrey H. Shapiro

Bio: Jeffrey H. Shapiro is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Photon & Quantum key distribution. The author has an hindex of 65, co-authored 395 publications receiving 17401 citations.


Papers
More filters
Proceedings ArticleDOI
10 May 2020
TL;DR: A photon-efficient QKD protocol based on energy-time entangled biphoton frequency combs that supports multiplexing and rate adaptivity under various channel conditions is offered.
Abstract: We offer a photon-efficient QKD protocol based on energy-time entangled biphoton frequency combs that supports multiplexing and rate adaptivity under various channel conditions.

2 citations

Posted Content
TL;DR: Floodlight quantum key distribution (FL-QKD) is introduced, which breaks the one photon per bit barrier and overcomes loss by exploiting a huge number of optical modes per bit.
Abstract: Existing quantum key distribution protocols typically transmit at most one photon per bit, so that the no-cloning theorem ensures their security. As a result, their key rates suffer dramatically in long-distance transmission because of channel loss. We introduce floodlight quantum key distribution (FL-QKD), which breaks the one photon per bit barrier and overcomes loss by exploiting a huge number of optical modes per bit. FL-QKD is capable of 2 Gbps secret-key rates over a 50 km fiber link. Its security follows from employing less than one photon per mode and using photon-coincidence channel monitoring.

2 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: In this article, the physics and computational aspects of ghost imaging are surveyed, originally correlation-based image formation using entangled light beams, has grown to encompass a wide range of related computational approaches.
Abstract: Ghost imaging, originally correlation-based image formation using entangled light beams, has grown to encompass a wide range of related computational approaches. This paper surveys the physics and computational aspects of ghost imaging.

2 citations

Journal ArticleDOI
TL;DR: The entropy at the output of a Bosonic channel is analyzed when coherent fields are randomly added to the signal to provide the minimum output entropy.
Abstract: The entropy at the output of a Bosonic channel is analyzed when coherent fields are randomly added to the signal. Coherent-state inputs are conjectured to provide the minimum output entropy. Supporting physical and mathematical evidence is provided.

1 citations

Proceedings ArticleDOI
TL;DR: In this paper, the performance of SAR-based automatic target recognition (ATR) systems has been evaluated using a physics-based approach to assess the accuracy of the recognition system.
Abstract: In recent years, synthetic aperture radars (SARs) have been used to detect man-made targets and to distinguish them from naturally occurring background. This paper continues development of a fundamental, physics-based approach to assessing the performance of SAR-based automatic target recognition (ATR) systems. A major thrust of this effort is to quantify the performance advantages that accrue when the recognition processor exploits the detailed signatures of the target's component reflectors, e.g., their specularity, their polarization properties, etc. Its purpose is to assess models developed from the electromagnetic scattering theory. New lower and upper bounds on the probability of correct classification (PCC) are developed for targets composed of a constellation of geometrically-simple reflectors. The performance discrepancy of a conventiional full-resolution processor with respect to an optimal whitening-filter processor is discussed.© (2001) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

1 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

01 Jan 2004
TL;DR: Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance and describes numerous important application areas such as image based rendering and digital libraries.
Abstract: From the Publisher: The accessible presentation of this book gives both a general view of the entire computer vision enterprise and also offers sufficient detail to be able to build useful applications. Users learn techniques that have proven to be useful by first-hand experience and a wide range of mathematical methods. A CD-ROM with every copy of the text contains source code for programming practice, color images, and illustrative movies. Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance. Topics are discussed in substantial and increasing depth. Application surveys describe numerous important application areas such as image based rendering and digital libraries. Many important algorithms broken down and illustrated in pseudo code. Appropriate for use by engineers as a comprehensive reference to the computer vision enterprise.

3,627 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate the ability to multiplex and transfer data between twisted beams of light with different amounts of orbital angular momentum, which provides new opportunities for increasing the data capacity of free-space optical communications links.
Abstract: Researchers demonstrate the ability to multiplex and transfer data between twisted beams of light with different amounts of orbital angular momentum — a development that provides new opportunities for increasing the data capacity of free-space optical communications links.

3,556 citations