scispace - formally typeset
Search or ask a question
Author

Jeffrey L. Elman

Bio: Jeffrey L. Elman is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Sentence & Verb. The author has an hindex of 50, co-authored 109 publications receiving 21408 citations. Previous affiliations of Jeffrey L. Elman include University of Texas at Austin & University of California, Berkeley.
Topics: Sentence, Verb, Connectionism, N400, Vocabulary


Papers
More filters
Journal ArticleDOI
TL;DR: A proposal along these lines first described by Jordan (1986) which involves the use of recurrent links in order to provide networks with a dynamic memory and suggests a method for representing lexical categories and the type/token distinction is developed.

10,264 citations

Journal ArticleDOI
TL;DR: The TRACE model, described in detail elsewhere, deals with short segments of real speech, and suggests a mechanism for coping with the fact that the cues to the identity of phonemes vary as a function of context.

2,663 citations

Journal ArticleDOI
TL;DR: Possible synergistic interactions between maturational change and the ability to learn a complex domain (language) as investigated in connectionist networks suggest that developmental restrictions on resources may constitute a necessary prerequisite for mastering certain complex domains.

1,766 citations

Journal ArticleDOI
TL;DR: Using a prediction task, a simple recurrent network is trained on multiclausal sentences which contain multiply-embedded relative clauses and principal component analysis of the hidden unit activation patterns reveals that the network solves the task by developing complex distributed representations which encode the relevant grammatical relations and hierarchical constituent structure.
Abstract: In this paper three problems for a connectionist account of language are considered: 1. What is the nature of linguistic representations? 2. How can complex structural relationships such as constituent structure be represented? 3. How can the apparently open-ended nature of language be accommodated by a fixed-resource system? Using a prediction task, a simple recurrent network (SRN) is trained on multiclausal sentences which contain multiply-embedded relative clauses. Principal component analysis of the hidden unit activation patterns reveals that the network solves the task by developing complex distributed representations which encode the relevant grammatical relations and hierarchical constituent structure. Differences between the SRN state representations and the more traditional pushdown store are discussed in the final section.

1,163 citations

Journal ArticleDOI
TL;DR: Simulation on populations of neural networks that both evolve at the population level and learn at the individual level finds both individuals that have high fitness and individuals that, although they do not have high Fitness at birth, end up with high fitness because they learn to predict.
Abstract: This article describes simulations on populations of neural networks that both evolve at the population level and learn at the individual level. Unlike other simulations, the evolutionary task (finding food in the environment) and the learning task (predicting the next position of food on the basis of present position and planned network's movement) are different tasks. In these conditions, learning influences evolution (without Lamarckian inheritance of learned weight changes) and evolution influences learning. Average but not peak fitness has a better evolutionary growth with learning than without learning. After the initial generations, individuals that learn to predict during life also improve their food-finding ability during life. Furthermore, individuals that inherit an innate capacity to find food also inherit an innate predisposition to learn to predict the sensory consequences of their movements. They do not predict better at birth, but they do learn to predict better than individuals of the ini...

349 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Abstract: Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O. 1. Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.

72,897 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Posted Content
TL;DR: This paper proposed two novel model architectures for computing continuous vector representations of words from very large data sets, and the quality of these representations is measured in a word similarity task and the results are compared to the previously best performing techniques based on different types of neural networks.
Abstract: We propose two novel model architectures for computing continuous vector representations of words from very large data sets. The quality of these representations is measured in a word similarity task, and the results are compared to the previously best performing techniques based on different types of neural networks. We observe large improvements in accuracy at much lower computational cost, i.e. it takes less than a day to learn high quality word vectors from a 1.6 billion words data set. Furthermore, we show that these vectors provide state-of-the-art performance on our test set for measuring syntactic and semantic word similarities.

20,077 citations

Book ChapterDOI
01 Jan 1988
TL;DR: This chapter contains sections titled: The Problem, The Generalized Delta Rule, Simulation Results, Some Further Generalizations, Conclusion.
Abstract: This chapter contains sections titled: The Problem, The Generalized Delta Rule, Simulation Results, Some Further Generalizations, Conclusion

17,604 citations

Journal ArticleDOI
TL;DR: This historical survey compactly summarizes relevant work, much of it from the previous millennium, review deep supervised learning, unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.

14,635 citations