scispace - formally typeset
Search or ask a question
Author

Jeffrey N. Fitzner

Bio: Jeffrey N. Fitzner is an academic researcher from University of North Carolina at Chapel Hill. The author has contributed to research in topics: ADAM17 Protein & Cleavage (embryo). The author has an hindex of 7, co-authored 7 publications receiving 5613 citations.

Papers
More filters
Journal ArticleDOI
20 Feb 1997-Nature
TL;DR: The results should facilitate the development of therapeutically useful inhibitors of TNF-α release, and they indicate that an important function of adamalysins may be to shed cell-surface proteins.
Abstract: Mammalian cells proteolytically release (shed) the extracellular domains of many cell-surface proteins. Modification of the cell surface in this way can alter the cell's responsiveness to its environment and release potent soluble regulatory factors. The release of soluble tumour-necrosis factor-alpha (TNF-alpha) from its membrane-bound precursor is one of the most intensively studied shedding events because this inflammatory cytokine is so physiologically important. The inhibition of TNF-alpha release (and many other shedding phenomena) by hydroxamic acid-based inhibitors indicates that one or more metalloproteinases is involved. We have now purified and cloned a metalloproteinase that specifically cleaves precursor TNF-alpha. Inactivation of the gene in mouse cells caused a marked decrease in soluble TNF-alpha production. This enzyme (called the TNF-alpha-converting enzyme, or TACE) is a new member of the family of mammalian adamalysins (or ADAMs), for which no physiological catalytic function has previously been identified. Our results should facilitate the development of therapeutically useful inhibitors of TNF-alpha release, and they indicate that an important function of adamalysins may be to shed cell-surface proteins.

3,007 citations

Journal ArticleDOI
13 Nov 1998-Science
TL;DR: The phenotype of mice lacking TACE suggests an essential role for soluble TGFalpha in normal development and emphasizes the importance of protein ectodomain shedding in vivo.
Abstract: The ectodomains of numerous proteins are released from cells by proteolysis to yield soluble intercellular regulators. The responsible protease, tumor necrosis factor-alpha converting enzyme (TACE), has been identified only in the case when tumor necrosis factor-alpha (TNFalpha) is released. Analyses of cells lacking this metalloproteinase-disintegrin revealed an expanded role for TACE in the processing of other cell surface proteins, including a TNF receptor, the L-selectin adhesion molecule, and transforming growth factor-alpha (TGFalpha). The phenotype of mice lacking TACE suggests an essential role for soluble TGFalpha in normal development and emphasizes the importance of protein ectodomain shedding in vivo.

1,627 citations

Journal ArticleDOI
21 Jul 1994-Nature
TL;DR: A therapeutic agent which inhibited the release of tumour necrosis factor, but did not reduce the cell-associated activity or the level of lymphotoxin-α, might preserve the benefits of these cytokines while preventing tumour Necrosis factor-induced damage.
Abstract: Tumour necrosis factor (tumour necrosis factor-alpha/cachectin) plays a critical role in certain physiological defensive responses but causes severe damage to the host organism when produced in excess. There are two forms of tumour necrosis factor, a type II membrane protein of relative molecular mass 26,000 (26K) and a soluble, 17K form generated from the cell-bound protein by proteolytic cleavage. The two forms of tumour necrosis factor and lymphotoxin-alpha (tumour necrosis factor-beta/lymphotoxin), a related protein, have similar but apparently not identical biological activities. A therapeutic agent which inhibited the release of tumour necrosis factor, but did not reduce the cell-associated activity or the level of lymphotoxin-alpha, might preserve the benefits of these cytokines while preventing tumour necrosis factor-induced damage. Here we describe a potent inhibitor of tumour necrosis factor processing and report that it protects mice from a lethal dose of endotoxin.

625 citations

Journal ArticleDOI
TL;DR: The structure of TACE opens a different approach toward the design of specific synthetic TACE inhibitors, which could act as effective therapeutic agents in vivo to modulate TNFalpha-induced pathophysiological effects, and might also help to control related shedding processes.
Abstract: Tumor necrosis factor-alpha (TNFalpha) is a cytokine that induces protective inflammatory reactions and kills tumor cells but also causes severe damage when produced in excess, as in rheumatoid arthritis and septic shock. Soluble TNFalpha is released from its membrane-bound precursor by a membrane-anchored proteinase, recently identified as a multidomain metalloproteinase called TNFalpha-converting enzyme or TACE. We have cocrystallized the catalytic domain of TACE with a hydroxamic acid inhibitor and have solved its 2.0 A crystal structure. This structure reveals a polypeptide fold and a catalytic zinc environment resembling that of the snake venom metalloproteinases, identifying TACE as a member of the adamalysin/ADAM family. However, a number of large insertion loops generate unique surface features. The pro-TNFalpha cleavage site fits to the active site of TACE but seems also to be determined by its position relative to the base of the compact trimeric TNFalpha cone. The active-site cleft of TACE shares properties with the matrix metalloproteinases but exhibits unique features such as a deep S3' pocket merging with the S1' specificity pocket below the surface. The structure thus opens a different approach toward the design of specific synthetic TACE inhibitors, which could act as effective therapeutic agents in vivo to modulate TNFalpha-induced pathophysiological effects, and might also help to control related shedding processes.

378 citations

Patent
19 Aug 1994
TL;DR: In this paper, the peptidyl derivatives having active groups capable of inhibiting TACE such as hydroxamates, thiols, phosphoryls and carboxyls are employed.
Abstract: Compounds and methods are disclosed that are useful in inhibiting the TNF-α converting enzyme (TACE) responsible for cleavage of TNF-α precursor to provide biologically active TNF-α. The compounds employed in the invention are peptidyl derivatives having active groups capable of inhibiting TACE such as hydroxamates, thiols, phosphoryls and carboxyls.

90 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Atherosclerosis is an inflammatory disease as discussed by the authors, and it is a major cause of death in the United States, Europe, and much of Asia, despite changes in lifestyle and use of new pharmacologic approaches to lower plasma cholesterol concentrations.
Abstract: Atherosclerosis is an inflammatory disease. Because high plasma concentrations of cholesterol, in particular those of low-density lipoprotein (LDL) cholesterol, are one of the principal risk factors for atherosclerosis,1 the process of atherogenesis has been considered by many to consist largely of the accumulation of lipids within the artery wall; however, it is much more than that. Despite changes in lifestyle and the use of new pharmacologic approaches to lower plasma cholesterol concentrations,2,3 cardiovascular disease continues to be the principal cause of death in the United States, Europe, and much of Asia.4,5 In fact, the lesions of atherosclerosis represent . . .

19,881 citations

Journal Article
TL;DR: Despite changes in lifestyle and the use of new pharmacologic approaches to lower plasma cholesterol concentrations, cardiovascular disease continues to be the principal cause of death in the United States, Europe, and much of Asia.

9,749 citations

Journal ArticleDOI
TL;DR: It is shown that the MMPs have functions other than promotion of invasion, have substrates other than components of the extracellular matrix, and that they function before invasion in the development of cancer.
Abstract: Matrix metalloproteinases (MMPs) have long been associated with cancer-cell invasion and metastasis. This provided the rationale for clinical trials of MMP inhibitors, unfortunately with disappointing results. We now know, however, that the MMPs have functions other than promotion of invasion, have substrates other than components of the extracellular matrix, and that they function before invasion in the development of cancer. With this knowledge in hand, can we rethink the use of MMP inhibitors in the clinic?

5,860 citations

Journal ArticleDOI
TL;DR: Recent advances shed light on how the structure and function of the MMPs are related and on how their transcription, secretion, activation, inhibition, localization, and clearance are controlled.
Abstract: ▪ Abstract The matrix metalloproteinases (MMPs) constitute a multigene family of over 25 secreted and cell surface enzymes that process or degrade numerous pericellular substrates. Their targets include other proteinases, proteinase inhibitors, clotting factors, chemotactic molecules, latent growth factors, growth factor–binding proteins, cell surface receptors, cell-cell adhesion molecules, and virtually all structural extracellular matrix proteins. Thus MMPs are able to regulate many biologic processes and are closely regulated themselves. We review recent advances that help to explain how MMPs work, how they are controlled, and how they influence biologic behavior. These advances shed light on how the structure and function of the MMPs are related and on how their transcription, secretion, activation, inhibition, localization, and clearance are controlled. MMPs participate in numerous normal and abnormal processes, and there are new insights into the key substrates and mechanisms responsible for regula...

3,839 citations

Journal ArticleDOI
23 Feb 2001-Cell
TL;DR: The authors regret the inability to cite all of the primary literature contributing to this review due to length considerations, but wish to thank F. Chan, T. Migone, and J. Wang for insightful comments on the manuscript.

3,756 citations