scispace - formally typeset
Search or ask a question
Author

Jeffrey N. Strathern

Bio: Jeffrey N. Strathern is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Saccharomyces cerevisiae & Gene. The author has an hindex of 46, co-authored 91 publications receiving 13904 citations. Previous affiliations of Jeffrey N. Strathern include University of Oregon & Cold Spring Harbor Laboratory.


Papers
More filters
Journal ArticleDOI
25 Jul 2002-Nature
TL;DR: It is shown that previously known and new genes are necessary for optimal growth under six well-studied conditions: high salt, sorbitol, galactose, pH 8, minimal medium and nystatin treatment, and less than 7% of genes that exhibit a significant increase in messenger RNA expression are also required for optimal Growth in four of the tested conditions.
Abstract: Determining the effect of gene deletion is a fundamental approach to understanding gene function. Conventional genetic screens exhibit biases, and genes contributing to a phenotype are often missed. We systematically constructed a nearly complete collection of gene-deletion mutants (96% of annotated open reading frames, or ORFs) of the yeast Saccharomyces cerevisiae. DNA sequences dubbed 'molecular bar codes' uniquely identify each strain, enabling their growth to be analysed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays. We show that previously known and new genes are necessary for optimal growth under six well-studied conditions: high salt, sorbitol, galactose, pH 8, minimal medium and nystatin treatment. Less than 7% of genes that exhibit a significant increase in messenger RNA expression are also required for optimal growth in four of the tested conditions. Our results validate the yeast gene-deletion collection as a valuable resource for functional genomics.

4,328 citations

Journal ArticleDOI
01 Dec 1979-Gene
TL;DR: The utility of this cloning system is demonstrated by isolating the yeast gene encoding the arginine permease, CAN1, from a pool of random yeast DNA fragments inserted into YEp13.

950 citations

Journal ArticleDOI
01 Jun 1984-Cell
TL;DR: It is determined that neither RAS1 nor RAS2 are by themselves essential genes, however, ras1 - ras2 - spores of doubly heterozygous diploids are incapable of resuming vegetative growth.

405 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work states that rapid advances in network biology indicate that cellular networks are governed by universal laws and offer a new conceptual framework that could potentially revolutionize the view of biology and disease pathologies in the twenty-first century.
Abstract: A key aim of postgenomic biomedical research is to systematically catalogue all molecules and their interactions within a living cell. There is a clear need to understand how these molecules and the interactions between them determine the function of this enormously complex machinery, both in isolation and when surrounded by other cells. Rapid advances in network biology indicate that cellular networks are governed by universal laws and offer a new conceptual framework that could potentially revolutionize our view of biology and disease pathologies in the twenty-first century.

7,475 citations

Journal ArticleDOI
TL;DR: These mutants—the ‘Keio collection’—provide a new resource not only for systematic analyses of unknown gene functions and gene regulatory networks but also for genome‐wide testing of mutational effects in a common strain background, E. coli K‐12 BW25113.
Abstract: We have systematically made a set of precisely defined, single-gene deletions of all nonessential genes in Escherichia coli K-12. Open-reading frame coding regions were replaced with a kanamycin cassette flanked by FLP recognition target sites by using a one-step method for inactivation of chromosomal genes and primers designed to create in-frame deletions upon excision of the resistance cassette. Of 4288 genes targeted, mutants were obtained for 3985. To alleviate problems encountered in high-throughput studies, two independent mutants were saved for every deleted gene. These mutants-the 'Keio collection'-provide a new resource not only for systematic analyses of unknown gene functions and gene regulatory networks but also for genome-wide testing of mutational effects in a common strain background, E. coli K-12 BW25113. We were unable to disrupt 303 genes, including 37 of unknown function, which are candidates for essential genes. Distribution is being handled via GenoBase (http://ecoli.aist-nara.ac.jp/).

7,428 citations

Journal ArticleDOI
20 Jul 1989-Nature
TL;DR: A novel genetic system to study protein-protein interactions between two proteins by taking advantage of the properties of the GAL4 protein of the yeast Saccharomyces cerevisiae, which may be applicable as a general method to identify proteins that interact with a known protein by the use of a simple galactose selection.
Abstract: Protein-protein interactions between two proteins have generally been studied using biochemical techniques such as crosslinking, co-immunoprecipitation and co-fractionation by chromatography. We have generated a novel genetic system to study these interactions by taking advantage of the properties of the GAL4 protein of the yeast Saccharomyces cerevisiae. This protein is a transcriptional activator required for the expression of genes encoding enzymes of galactose utilization. It consists of two separable and functionally essential domains: an N-terminal domain which binds to specific DNA sequences (UASG); and a C-terminal domain containing acidic regions, which is necessary to activate transcription. We have generated a system of two hybrid proteins containing parts of GAL4: the GAL4 DNA-binding domain fused to a protein 'X' and a GAL4 activating region fused to a protein 'Y'. If X and Y can form a protein-protein complex and reconstitute proximity of the GAL4 domains, transcription of a gene regulated by UASG occurs. We have tested this system using two yeast proteins that are known to interact--SNF1 and SNF4. High transcriptional activity is obtained only when both hybrids are present in a cell. This system may be applicable as a general method to identify proteins that interact with a known protein by the use of a simple galactose selection.

6,529 citations

Journal ArticleDOI
TL;DR: The relative importance of the common main-chain and side-chain interactions in determining the propensities of proteins to aggregate is discussed and some of the evidence that the oligomeric fibril precursors are the primary origins of pathological behavior is described.
Abstract: Peptides or proteins convert under some conditions from their soluble forms into highly ordered fibrillar aggregates. Such transitions can give rise to pathological conditions ranging from neurodegenerative disorders to systemic amyloidoses. In this review, we identify the diseases known to be associated with formation of fibrillar aggregates and the specific peptides and proteins involved in each case. We describe, in addition, that living organisms can take advantage of the inherent ability of proteins to form such structures to generate novel and diverse biological functions. We review recent advances toward the elucidation of the structures of amyloid fibrils and the mechanisms of their formation at a molecular level. Finally, we discuss the relative importance of the common main-chain and side-chain interactions in determining the propensities of proteins to aggregate and describe some of the evidence that the oligomeric fibril precursors are the primary origins of pathological behavior.

5,897 citations

Journal ArticleDOI
01 Aug 2003-Science
TL;DR: Genome-wide analysis of the distribution of integration events revealed the existence of a large integration site bias at both the chromosome and gene levels, and insertion mutations were identified in genes that are regulated in response to the plant hormone ethylene.
Abstract: Over 225,000 independent Agrobacterium transferred DNA (T-DNA) insertion events in the genome of the reference plant Arabidopsis thaliana have been created that represent near saturation of the gene space. The precise locations were determined for more than 88,000 T-DNA insertions, which resulted in the identification of mutations in more than 21,700 of the approximately 29,454 predicted Arabidopsis genes. Genome-wide analysis of the distribution of integration events revealed the existence of a large integration site bias at both the chromosome and gene levels. Insertion mutations were identified in genes that are regulated in response to the plant hormone ethylene.

5,227 citations