scispace - formally typeset
Search or ask a question
Author

Jeffrey P. Thomas

Bio: Jeffrey P. Thomas is an academic researcher from Duke University. The author has contributed to research in topics: Harmonic balance & Airfoil. The author has an hindex of 25, co-authored 84 publications receiving 3192 citations. Previous affiliations of Jeffrey P. Thomas include University of Michigan & University of Liège.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a harmonic balance technique for modeling unsteady nonlinear e ows in turbomachinery is presented, which exploits the fact that many unstaidy e ow variables are periodic in time.
Abstract: A harmonic balance technique for modeling unsteady nonlinear e ows in turbomachinery is presented. The analysis exploits the fact that many unsteady e ows of interest in turbomachinery are periodic in time. Thus, the unsteady e ow conservation variables may be represented by a Fourier series in time with spatially varying coefe cients. This assumption leads to a harmonic balance form of the Euler or Navier ‐Stokes equations, which, in turn, can be solved efe ciently as a steady problem using conventional computational e uid dynamic (CFD) methods, including pseudotime time marching with local time stepping and multigrid acceleration. Thus, the method is computationally efe cient, at least one to two orders of magnitude faster than conventional nonlinear time-domain CFD simulations. Computational results for unsteady, transonic, viscous e ow in the front stage rotor of a high-pressure compressor demonstrate that even strongly nonlinear e ows can be modeled to engineering accuracy with a small number of terms retained in the Fourier series representation of the e ow. Furthermore, in some cases, e uid nonlinearities are found to be important for surprisingly small blade vibrations.

673 citations

Journal ArticleDOI
TL;DR: In this paper, a method for constructing reduced-order models of unsteady small-disturbance e ows is presented, using basis vectors determined from the proper orthogonal decomposition (POD) of an ensemble of small-disorderance frequency-domain solutions.
Abstract: A new method for constructing reduced-order models (ROM) of unsteady small-disturbance e ows is presented. The reduced-order models are constructed using basis vectors determined from the proper orthogonal decomposition (POD) of an ensemble of small-disturbance frequency-domain solutions. Each of the individual frequencydomain solutions is computed using an efe cient time-linearized e ow solver. We show that reduced-order models can be constructed using just a handful of POD basis vectors, producing low-order but highly accurate models of the unsteady e ow over a wide range of frequencies. We apply the POD/ROM technique to compute the unsteady aerodynamic and aeroelastic behavior of an isolated transonic airfoil and to a two-dimensional cascade of airfoils.

352 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the effect of nonlinear aerodynamic effects on the divergence, utter, and limit-cycle oscillation (LCO) characteristics of a transonic airfoil cone guration.
Abstract: By the use of a state-of-the-art computational e uid dynamic (CFD) method to model nonlinear steady and unsteady transonice owsin conjunction with a linearstructural model,an investigationismadeinto how nonlinear aerodynamics can effect the divergence, e utter, and limit-cycle oscillation (LCO) characteristics of a transonic airfoil cone guration. A single-degree-of-freedom (DOF) model is studied for divergence, and one- and two-DOF models are studied for e utter and LCO. A harmonicbalancemethod in conjunction with the CFD solver is used to determine the aerodynamics for e nite amplitude unsteady excitations of a prescribed frequency. A procedure for determining the LCO solution is also presented. For the cone guration investigated, nonlinear aerodynamic effects are found to produce a favorable transonic divergence trend and unstable and stable LCO solutions, respectively, for the one- and two-DOF e utter models. Nomenclature a = nondimensional location of airfoil elastic axis, e=b b, c = semichord and chord, respectively cl, cm = coefe cients of lift and moment about elastic axis, respectively e = location of airfoil elastic axis, measured positive aft of airfoil midchord h, ® = airfoil plunge and pitch degrees of freedom I® = second moment of inertia of airfoil about elastic axis

282 citations

Journal ArticleDOI
TL;DR: In this paper, the proper orthogonal decomposition (POD) based reduced order modeling (ROM) technique for modeling unsteady frequency domain aerodynamics is developed for a large scale computational model of an inviscid flow transonic wing configuration.
Abstract: The proper orthogonal decomposition (POD) based reduced order modeling (ROM) technique for modeling unsteady frequency domain aerodynamics is developed for a large scale computational model of an inviscid flow transonic wing configuration. Using the methodology, it is shown that a computational fluid dynamic (CFD) model with over a three quarters of a million degrees of freedom can be reduced to a system with just a few dozen degrees of freedom, while still retaining the accuracy of the unsteady aerodynamics of the full system representation. Furthermore, POD vectors generated from unsteady flow solution snapshots based on one set of structural mode shapes can be used for different structural mode shapes so long as solution snapshots at the endpoints of the frequency range of interest are included in the overall snapshot ensemble. Thus, the snapshot computation aspect of the method, which is the most computationally expensive part of the procedure, does not have to be fully repeated as different structural configurations are considered.

192 citations

Journal ArticleDOI
L. Liu1, Jeffrey P. Thomas1, Earl H. Dowell1, Peter J. Attar1, Kenneth C. Hall1 
TL;DR: A novel harmonic balance formulation is focused on, which is much easier to implement than the standard/classical harmonic balance method for complex nonlinear mathematical models and algorithms.

143 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A new method for performing a balanced reduction of a high-order linear system is presented, which combines the proper orthogonal decomposition and concepts from balanced realization theory and extends to nonlinear systems.
Abstract: A new method for performing a balanced reduction of a high-order linear system is presented. The technique combines the proper orthogonal decomposition and concepts from balanced realization theory. The method of snapshotsisused to obtainlow-rank,reduced-rangeapproximationsto thesystemcontrollability and observability grammiansineitherthetimeorfrequencydomain.Theapproximationsarethenusedtoobtainabalancedreducedorder model. The method is particularly effective when a small number of outputs is of interest. It is demonstrated for a linearized high-order system that models unsteady motion of a two-dimensional airfoil. Computation of the exact grammians would be impractical for such a large system. For this problem, very accurate reducedorder models are obtained that capture the required dynamics with just three states. The new models exhibit far superiorperformancethanthosederived using a conventionalproperorthogonal decomposition. Although further development is necessary, the concept also extends to nonlinear systems.

1,021 citations

Journal ArticleDOI
TL;DR: The problem of investigating hidden oscillations arose in the second part of Hilbert's 16th problem (1900), and the first nontrivial results were obtained in Bautin's works, which revealed no similar transient processes leading to such attractors.
Abstract: From a computational point of view, in nonlinear dynamical systems, attractors can be regarded as self-excited and hidden attractors. Self-excited attractors can be localized numerically by a standard computational procedure, in which after a transient process a trajectory, starting from a point of unstable manifold in a neighborhood of equilibrium, reaches a state of oscillation, therefore one can easily identify it. In contrast, for a hidden attractor, a basin of attraction does not intersect with small neighborhoods of equilibria. While classical attractors are self-excited, attractors can therefore be obtained numerically by the standard computational procedure. For localization of hidden attractors it is necessary to develop special procedures, since there are no similar transient processes leading to such attractors. At first, the problem of investigating hidden oscillations arose in the second part of Hilbert's 16th problem (1900). The first nontrivial results were obtained in Bautin's works, which...

750 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the development of new reduced-order modeling techniques and discuss their applicability to various problems in computational physics, including aerodynamic and aeroelastic behaviors of two-dimensional and three-dimensional geometries.

732 citations

Journal ArticleDOI
TL;DR: In this paper, a harmonic balance technique for modeling unsteady nonlinear e ows in turbomachinery is presented, which exploits the fact that many unstaidy e ow variables are periodic in time.
Abstract: A harmonic balance technique for modeling unsteady nonlinear e ows in turbomachinery is presented. The analysis exploits the fact that many unsteady e ows of interest in turbomachinery are periodic in time. Thus, the unsteady e ow conservation variables may be represented by a Fourier series in time with spatially varying coefe cients. This assumption leads to a harmonic balance form of the Euler or Navier ‐Stokes equations, which, in turn, can be solved efe ciently as a steady problem using conventional computational e uid dynamic (CFD) methods, including pseudotime time marching with local time stepping and multigrid acceleration. Thus, the method is computationally efe cient, at least one to two orders of magnitude faster than conventional nonlinear time-domain CFD simulations. Computational results for unsteady, transonic, viscous e ow in the front stage rotor of a high-pressure compressor demonstrate that even strongly nonlinear e ows can be modeled to engineering accuracy with a small number of terms retained in the Fourier series representation of the e ow. Furthermore, in some cases, e uid nonlinearities are found to be important for surprisingly small blade vibrations.

673 citations

Journal ArticleDOI
TL;DR: In this article, an interpolation method based on the Grassmann manifold and its tangent space at a point that is applicable to structural, aerodynamic, aeroelastic, and many other reduced-order models based on projection schemes is presented.
Abstract: Reduced-order models are usually thought of as computationally inexpensive mathematical representations that offer the potential for near real-time analysis. Although most reduced-order models can operate in near real-time, their construction can be computationally expensive, as it requires accumulating a large number of system responses to input excitations. Furthermore, reduced-order models usually lack robustness with respect to parameter changes and therefore must often be rebuilt for each parameter variation. Together, these two issues underline the need for a fast and robust method for adapting precomputed reduced-order models to new sets of physical or modeling parameters. To this effect, this paper presents an interpolation method based on the Grassmann manifold and its tangent space at a point that is applicable to structural, aerodynamic, aeroelastic, and many other reduced-order models based on projection schemes. This method is illustrated here with the adaptation of computational-fluid-dynamics-based aeroelastic reduced-order models of complete fighter configurations to new values of the freestream Mach number. Good correlations with results obtained from direct reduced-order model reconstruction, high-fidelity nonlinear and linear simulations are reported, thereby highlighting the potential of the proposed reduced-order model adaptation method for near real-time aeroelastic predictions using precomputed reduced-order model databases.

618 citations