scispace - formally typeset
Search or ask a question

Showing papers by "Jeffrey W. Kysar published in 2016"


Journal ArticleDOI
27 Jan 2016-ACS Nano
TL;DR: This study demonstrates that the finite shear strength between individual layers could explain the experimentally measured size-dependent strength with thickness scaling in MLG sheets and reveals an atomic level interlayer slippage process.
Abstract: Understanding the deformation mechanisms in multilayer graphene (MLG), an attractive material used in nanodevices as well as in the reinforcement of nanocomposites, is critical yet challenging due to difficulties in experimental characterization and the spatiotemporal limitations of atomistic modeling. In this study, we combine nanomechanical experiments with coarse-grained molecular dynamics (CG-MD) simulations to elucidate the mechanisms of deformation and failure of MLG sheets. Elastic properties of graphene sheets with one to three layers are measured using film deflection tests. A nonlinear behavior in the force vs deflection curves for MLGs is observed in both experiments and simulations: during loading/unloading cycles, MLGs dissipate energy through a “recoverable slippage” mechanism. The CG-MD simulations further reveal an atomic level interlayer slippage process and suggest that the dissipated energy scales with film perimeter. Moreover, our study demonstrates that the finite shear strength betwe...

105 citations


Journal ArticleDOI
TL;DR: In this paper, an implementation of the Nye-Kroner-Bilby method for resolving measured geometrically necessary dislocation content onto individual dislocation types via a novel simulation of distortion fields around continuum fields of dislocation density based on classical continuum elasticity equations is presented.

58 citations


Journal ArticleDOI
TL;DR: The development of a microneedle for perilymph sampling that minimizes the size of RWM perforation, facilitates quick aspiration, and provides precise volume control is reported on.
Abstract: Precision medicine for inner-ear disease is hampered by the absence of a methodology to sample inner-ear fluid atraumatically. The round window membrane (RWM) is an attractive portal for accessing cochlear fluids as it heals spontaneously. In this study, we report on the development of a microneedle for perilymph sampling that minimizes the size of RWM perforation, facilitates quick aspiration, and provides precise volume control. Here, considering the mechanical anisotropy of the RWM and hydrodynamics through a microneedle, a 31G stainless steel pipe was machined into wedge-shaped design via electrical discharge machining. The sharpness of the needle was evaluated via a surface profilometer. Guinea pig RWM was penetrated in vitro, and 1 μL of perilymph was sampled and analyzed via UV-vis spectroscopy. The prototype wedge shaped needle was successfully fabricated with the tip curvature of 4.5 μm and the surface roughness of 3.66 μm in root mean square. The needle created oval perforation with minor and major diameter of 143 and 344 μm (n = 6). The sampling duration and standard deviation of aspirated volume were 3 s and 6.8 % respectively. The protein concentration was 1.74 mg/mL. The prototype needle facilitated precise perforation of RWMs and rapid aspiration of cochlear fluid with precise volume control. The needle design is promising and requires testing in human cadaveric temporal bone and further optimization to become clinically viable.

19 citations


Journal ArticleDOI
TL;DR: In this paper, a two-dimensional deformation field on an indented single crystal, where the only nonzero lattice rotation occurs in the plane of deformation and only three effective in-plane slip systems are activated, is investigated both experimentally and numerically.

18 citations


Journal ArticleDOI
TL;DR: Though designed for single use, the needle tolerated repeated use without significant damage, and formed precise perforations in the RWM while minimizing damage during cochlear implantation.
Abstract: The round window membrane (RWM) has become the preferred route, over cochleostomy, for the introduction of cochlear implant electrodes as it minimizes inner ear trauma. However, in the absence of a tool designed for creating precise perforation, current practices lead to tearing of the RWM and significant intracochlear pressure fluctuations. On the basis of RWM mechanical properties, we have designed a multi-serrated needle to create consistent holes without membrane tearing or damaging inner ear structures. Four and eight-serrated needles were designed and produced with wire electrical discharge machining (EDM). The needle's ability to create RWM perforations was tested in deidentified, commercially acquired temporal bones with the assistance of a micromanipulator. Subsequently, specimens were imaged under light and scanning electron microscopy (SEM). The needles created consistent, appropriately sized holes in the membrane with minimal tearing. While a four-serrated crown needle made rectangular/trapezoid perforations, the octagonal crown formed smooth oval holes within the membrane. Though designed for single use, the needle tolerated repeated use without significant damage. The serrated needles formed precise perforations in the RWM while minimizing damage during cochlear implantation. The octagonal needle design created the preferred oval perforation better than the quad needle. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1633-1637, 2016.

18 citations


Journal ArticleDOI
TL;DR: In this paper, the deformation and fracture of polycrystalline graphene grain boundaries were modeled as a continuum cohesive zone model (CZM) and the results of the model were used for the finite element method (FEM).
Abstract: Pristine single crystal graphene is the strongest known two-dimensional material, and its nonlinear anisotropic mechanical properties are well understood from the atomic length scale up to a continuum description. However, experiments indicate that grain boundaries in the polycrystalline form reduce the mechanical behavior of polycrystalline graphene. Herein, we perform atomistic-scale molecular dynamics simulations of the deformation and fracture of graphene grain boundaries and express the results as continuum cohesive zone models (CZMs) that embed notions of the grain boundary ultimate strength and fracture toughness. To facilitate energy balance, we employ a new methodology that simulates a quasi-static controlled crack propagation which renders the kinetic energy contribution to the total energy negligible. We verify good agreement between Griffith's critical energy release rate and the work of separation of the CZM, and we note that the energy of crack edges and fracture toughness differs by about 35%, which is attributed to the phenomenon of bond trapping. This justifies the implementation of the CZM within the context of the finite element method (FEM). To enhance computational efficiency in the FEM implementation, we discuss the use of scaled traction-separation laws (TSLs) for larger element sizes. As a final result, we have established that the failure characteristics of pristine graphene and high tilt angle bicrystals differ by less than 10%. This result suggests that one could use a unique or a few typical TSLs as a good approximation for the CZMs associated with the mechanical simulations of the polycrystalline graphene.

17 citations


Journal ArticleDOI
TL;DR: In this paper, the diffusive mechanism and the strain rates for nanocrystalline thin films of copper with an average grain size of about 35 nm during plastic strain recovery and creep are explored.
Abstract: Nanocrystalline metals exhibit a phenomenon called plastic strain recovery whereby plastic strain introduced through a load cycle is gradually recovered under no external loading over a time period of hours and days. In this study, we experimentally explore the diffusive mechanisms and the strain rates for nanocrystalline thin films of copper with an average grain size of about 35 nm during plastic strain recovery and creep. The experiments are performed via the plane strain bulge test and the thin film samples are deposited using thermal evaporation and sputtering. The specimens recover their residual strain in a period of time with two characteristic strain rates, a transient strain recovery rate of the order of 10−7/s and a steady-state strain recovery rate of the order of 10−9/s and there is a characteristic time at which the transition occurs between the two rates. The results suggest that a diffusive mechanism in conjunction with voids within the nanocrystalline material can explain the two plastic strain recovery rates and the transition between the two.

7 citations


Book ChapterDOI
01 Jan 2016
TL;DR: The round window membrane is the terminal boundary between the fluid-filled inner ear and air-filled middle ear where the sound wave is released from the inner ear after exciting the neuronal sound transducers in the basilar membrane.
Abstract: The round window membrane (RWM) is the terminal boundary between the fluid-filled inner ear and air-filled middle ear where the sound wave is released from the inner ear after exciting the neuronal sound transducers in the basilar membrane. For the treatment of inner ear diseases, the RWM is an attractive entrance to introduce therapeutic reagents by producing micro-scale perforations. Therefore, the mechanical properties of this collagen-fiber-reinforced membrane are critical in understanding the functional role in hearing and engineering a device for drug delivery.

4 citations