scispace - formally typeset
Search or ask a question
Author

Jeffrey Waltz

Other affiliations: American College of Radiology
Bio: Jeffrey Waltz is an academic researcher from Medical University of South Carolina. The author has contributed to research in topics: Medicine & Internal medicine. The author has an hindex of 2, co-authored 10 publications receiving 15 citations. Previous affiliations of Jeffrey Waltz include American College of Radiology.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the performance of an AI convolutional neural network (CNN) prototype (AI-RAD Companion, Siemens Healthineers) that automatically detects pulmonary nodules and quantifies coronary artery calcium volume (CACV) on low-dose chest CT (LDCT) was compared to expert radiologists.
Abstract: Artificial intelligence (AI) in diagnostic radiology is undergoing rapid development. Its potential utility to improve diagnostic performance for cardiopulmonary events is widely recognized, but the accuracy and precision have yet to be demonstrated in the context of current screening modalities. Here, we present findings on the performance of an AI convolutional neural network (CNN) prototype (AI-RAD Companion, Siemens Healthineers) that automatically detects pulmonary nodules and quantifies coronary artery calcium volume (CACV) on low-dose chest CT (LDCT), and compare results to expert radiologists. We also correlate AI findings with adverse cardiopulmonary outcomes in a retrospective cohort of 117 patients who underwent LDCT. A total of 117 patients were enrolled in this study. Two CNNs were used to identify lung nodules and CACV on LDCT scans. All subjects were used for lung nodule analysis, and 96 subjects met the criteria for coronary artery calcium volume analysis. Interobserver concordance was measured using ICC and Cohen’s kappa. Multivariate logistic regression and partial least squares regression were used for outcomes analysis. Agreement of the AI findings with experts was excellent (CACV ICC = 0.904, lung nodules Cohen’s kappa = 0.846) with high sensitivity and specificity (CACV: sensitivity = .929, specificity = .960; lung nodules: sensitivity = 1, specificity = 0.708). The AI findings improved the prediction of major cardiopulmonary outcomes at 1-year follow-up including major adverse cardiac events and lung cancer (AUCMACE = 0.911, AUCLung Cancer = 0.942). We conclude the AI prototype rapidly and accurately identifies significant risk factors for cardiopulmonary disease on standard screening low-dose chest CT. This information can be used to improve diagnostic ability, facilitate intervention, improve morbidity and mortality, and decrease healthcare costs. There is also potential application in countries with limited numbers of cardiothoracic radiologists.

36 citations

Journal ArticleDOI
12 Jun 2020-Cureus
TL;DR: CAC should be assessed on all LDCT performed for lung cancer screening and that a qualitative categorical scoring system should be provided in the impression for each patient, as there was a consensus within these papers that LDCT for Lung cancer screening plays a role in the evaluation of CAC.
Abstract: Low-dose computed tomography (LDCT) has been extensively validated for lung cancer screening in selected patient populations. Additionally, the use of gated cardiac CT to assess coronary artery calcium (CAC) burden has been validated to determine a patient's risk for major cardiovascular adverse events. This is typically performed by calculating an Agatston score based on density and overall burden of calcified plaque within the coronary arteries. Patients that qualify for LDCT for lung cancer screening commonly share major risk factors for coronary artery disease and would frequently benefit from an additional gated cardiac CT for the assessment of CAC. Given the widespread use of LDCT for lung cancer screening, we evaluated current literature regarding the use of non-gated chest CT, specifically LDCT, for the detection and grading of coronary artery calcifications. Additionally, given the evolving and increasing use of artificial intelligence (AI) in the interpretation of radiologic studies, current literature for the use of AI in CAC assessment was reviewed. We reviewed primary scientific literature dating up to April 2020 using Pubmed and Google Scholar, with the search terms low dose CT, lung cancer screening, coronary artery calcium, EKG/cardiac gated CT, deep learning, machine learning, and AI. These publications were then independently evaluated by each member of our team. Overall, there was a consensus within these papers that LDCT for lung cancer screening plays a role in the evaluation of CAC. Most studies note the inherent problems with the evaluation of the density of coronary calcifications on LDCT to give an accurate numeric calcium or Agatston score. The current method of evaluating CAC on LDCT involves using a qualitative categorical system (none, mild, moderate, or severe). When performed by cardiac imaging experts, this method broadly correlates with traditional CAC score groups (0, 1 to 100, 101 to 400, and > 400). Furthermore, given the high sensitivity of a properly protocolled LDCT for coronary calcium, a negative study for CAC precludes the need for a dedicated gated CT assessment. However, qualitative methods are not as accurate or reproducible when performed by general radiologists. The implementation of AI in the LDCT screening process has the potential to give a quantifiable and reproducible numeric value to the calcium score, based on whole heart volume scoring of calcium. This more closely aligns with the Agatston score and serves as a better guide for treatment and risk assessment using current guidelines. We conclude that CAC should be assessed on all LDCT performed for lung cancer screening and that a qualitative categorical scoring system should be provided in the impression for each patient. Early studies involving AI for the assessment of CAC are promising, but more extensive studies are needed before a final recommendation for its use can be given. The implementation of an accurate, automated AI CAC assessment tool would improve radiologist compliance and ease of overall workflow. Ultimately, the potential end result would be improved turnaround time, better patient outcomes, and reduced healthcare costs by maximizing preventative care in this high-risk population.

10 citations

Journal ArticleDOI
01 Mar 2021-Heliyon
TL;DR: In this paper, the authors compared the clinical effectiveness of non-contrast coronary MRA with that of invasive coronary angiography (ICA) in patients with suspected CAD using a systematic review and meta-analysis.

7 citations

Journal ArticleDOI
TL;DR: A map of the ultrasound landscape is articulate that divides sonographic evaluations into four distinct categories on the basis of setting, comprehensiveness, and completeness, with practical implications for future research and reimbursement paradigms.
Abstract: Current descriptions of ultrasound evaluations, including use of the term "point-of-care ultrasound" (POCUS), are imprecise because they are predicated on distinctions based on the device used to obtain images, the location where the images were obtained, the provider who obtained the images, or the focus of the examination. This is confusing because it does not account for more meaningful distinctions based on the setting, comprehensiveness, and completeness of the evaluation. In this article, the Society of Radiologists in Ultrasound and the members of the American College of Radiology Ultrasound Commission articulate a map of the ultrasound landscape that divides sonographic evaluations into four distinct categories on the basis of setting, comprehensiveness, and completeness. Details of this classification scheme are elaborated, including important clarifications regarding what ensures comprehensiveness and completeness. Practical implications of this framework for future research and reimbursement paradigms are highlighted.

6 citations

Journal ArticleDOI
TL;DR: Choe et al. as mentioned in this paper evaluated the predictive value of on-site machine learning-based fractional flow reserve (CT-FFR) for adverse clinical outcomes in candidates for TAVR.
Abstract: Background The role of CT angiography-derived fractional flow reserve (CT-FFR) in pre-transcatheter aortic valve replacement (TAVR) assessment is uncertain. Purpose To evaluate the predictive value of on-site machine learning-based CT-FFR for adverse clinical outcomes in candidates for TAVR. Materials and Methods This observational retrospective study included patients with severe aortic stenosis referred to TAVR after coronary CT angiography (CCTA) between September 2014 and December 2019. Clinical end points comprised major adverse cardiac events (MACE) (nonfatal myocardial infarction, unstable angina, cardiac death, or heart failure admission) and all-cause mortality. CT-FFR was obtained semiautomatically using an on-site machine learning algorithm. The ability of CT-FFR (abnormal if ≤0.75) to predict outcomes and improve the predictive value of the current noninvasive work-up was assessed. Survival analysis was performed, and the C-index was used to assess the performance of each predictive model. To compare nested models, the likelihood ratio χ2 test was performed. Results A total of 196 patients (mean age ± standard deviation, 75 years ± 11; 110 women [56%]) were included; the median time of follow-up was 18 months. MACE occurred in 16% (31 of 196 patients) and all-cause mortality in 19% (38 of 196 patients). Univariable analysis revealed CT-FFR was predictive of MACE (hazard ratio [HR], 4.1; 95% CI: 1.6, 10.8; P = .01) but not all-cause mortality (HR, 1.2; 95% CI: 0.6, 2.2; P = .63). CT-FFR was independently associated with MACE (HR, 4.0; 95% CI: 1.5, 10.5; P = .01) when adjusting for potential confounders. Adding CT-FFR as a predictor to models that include CCTA and clinical data improved their predictive value for MACE (P = .002) but not all-cause mortality (P = .67), and it showed good discriminative ability for MACE (C-index, 0.71). Conclusion CT angiography-derived fractional flow reserve was associated with major adverse cardiac events in candidates for transcatheter aortic valve replacement and improved the predictive value of coronary CT angiography assessment. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Choe in this issue.

5 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present a review of AI-based techniques, with a special focus on oncological PET and PET/CT imaging, for different detection, classification, and prediction/prognosis tasks.
Abstract: Artificial intelligence (AI) techniques have significant potential to enable effective, robust, and automated image phenotyping including the identification of subtle patterns. AI-based detection searches the image space to find the regions of interest based on patterns and features. There is a spectrum of tumor histologies from benign to malignant that can be identified by AI-based classification approaches using image features. The extraction of minable information from images gives way to the field of "radiomics" and can be explored via explicit (handcrafted/engineered) and deep radiomics frameworks. Radiomics analysis has the potential to be used as a noninvasive technique for the accurate characterization of tumors to improve diagnosis and treatment monitoring. This work reviews AI-based techniques, with a special focus on oncological PET and PET/CT imaging, for different detection, classification, and prediction/prognosis tasks. We also discuss needed efforts to enable the translation of AI techniques to routine clinical workflows, and potential improvements and complementary techniques such as the use of natural language processing on electronic health records and neuro-symbolic AI techniques.

18 citations

Journal ArticleDOI
01 Jan 2022
TL;DR: In this paper , the authors present a review of AI-based techniques, with a special focus on oncological PET and PET/CT imaging, for different detection, classification, and prediction/prognosis tasks.
Abstract: Artificial intelligence (AI) techniques have significant potential to enable effective, robust, and automated image phenotyping including the identification of subtle patterns. AI-based detection searches the image space to find the regions of interest based on patterns and features. There is a spectrum of tumor histologies from benign to malignant that can be identified by AI-based classification approaches using image features. The extraction of minable information from images gives way to the field of "radiomics" and can be explored via explicit (handcrafted/engineered) and deep radiomics frameworks. Radiomics analysis has the potential to be used as a noninvasive technique for the accurate characterization of tumors to improve diagnosis and treatment monitoring. This work reviews AI-based techniques, with a special focus on oncological PET and PET/CT imaging, for different detection, classification, and prediction/prognosis tasks. We also discuss needed efforts to enable the translation of AI techniques to routine clinical workflows, and potential improvements and complementary techniques such as the use of natural language processing on electronic health records and neuro-symbolic AI techniques.

18 citations

Journal ArticleDOI
TL;DR: Radiotherapy plays an important role in the treatment of localized primary malignancies involving the chest wall or intrathoracic malignancy, and secondary effects of radiotherapy on the lung result in radiation-induced lung disease.
Abstract: Radiotherapy plays an important role in the treatment of localized primary malignancies involving the chest wall or intrathoracic malignancies. Secondary effects of radiotherapy on the lung result in radiation-induced lung disease. The phases of lung injury from radiation range from acute pneumonitis to chronic pulmonary fibrosis. Radiation pneumonitis is a clinical diagnosis based on the history of radiation, imaging findings, and the presence of classic symptoms after exclusion of infection, pulmonary embolism, heart failure, drug-induced pneumonitis, and progression of the primary tumor. Computed tomography (CT) is the preferred imaging modality as it provides a better picture of parenchymal changes. Lung biopsy is rarely required for the diagnosis. Treatment is necessary only for symptomatic patients. Mild symptoms can be treated with inhaled steroids while subacute to moderate symptoms with impaired lung function require oral corticosteroids. Patients who do not tolerate or are refractory to steroids can be considered for treatment with immunosuppressive agents such as azathioprine and cyclosporine. Improvements in radiation technique, as well as early diagnosis and appropriate treatment with high-dose steroids, will lead to lower rates of pneumonitis and an overall good prognosis.

15 citations

Journal ArticleDOI
TL;DR: Coronary CT angiography–derived fractional flow reserve (CT-FFR) using machine learning together with the CAD Reporting and Data System (CAD-RADS) classification safely identifies significant coronary artery disease based on quantitative coronaryAngiography in patients prior to transcatheter aortic valve replacement.

10 citations