scispace - formally typeset
Search or ask a question
Author

Jelena Levi

Bio: Jelena Levi is an academic researcher from Stanford University. The author has contributed to research in topics: Molecular imaging & Biodistribution. The author has an hindex of 17, co-authored 26 publications receiving 2355 citations. Previous affiliations of Jelena Levi include Huazhong University of Science and Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that single-walled carbon nanotubes conjugated with cyclic Arg-Gly-Asp (RGD) peptides can be used as a contrast agent for photoacoustic imaging of tumours and intravenous administration showed eight times greater photoac acoustic signal in the tumour than mice injected with non-targeted nanot tubes.
Abstract: Photoacoustic imaging of living subjects offers higher spatial resolution and allows deeper tissues to be imaged compared with most optical imaging techniques1,2,3,4,5,6,7. As many diseases do not exhibit a natural photoacoustic contrast, especially in their early stages, it is necessary to administer a photoacoustic contrast agent. A number of contrast agents for photoacoustic imaging have been suggested previously8,9,10,11,12,13,14,15, but most were not shown to target a diseased site in living subjects. Here we show that single-walled carbon nanotubes conjugated with cyclic Arg-Gly-Asp (RGD) peptides can be used as a contrast agent for photoacoustic imaging of tumours. Intravenous administration of these targeted nanotubes to mice bearing tumours showed eight times greater photoacoustic signal in the tumour than mice injected with non-targeted nanotubes. These results were verified ex vivo using Raman microscopy. Photoacoustic imaging of targeted single-walled carbon nanotubes may contribute to non-invasive cancer imaging and monitoring of nanotherapeutics in living subjects16. Photoacoustic imaging offers higher spatial resolution than most optical imaging techniques, but contrast agents are needed because many diseases in their early stages do not display a natural photoacoustic contrast. Using single-walled carbon nanotubes conjugated with a peptide as a contrast agent allows the non-invasive photoacoustic imaging of tumours in animals.

1,169 citations

Journal ArticleDOI
TL;DR: The NIR fluorescent glucose analogues, Cy5.5-2DG and Cy5-NHS, both demonstrate tumor-targeting abilities in cell culture and living mice and may eventually translate to clinical applications.

185 citations

Journal ArticleDOI
TL;DR: The design, synthesis, and evaluation of an activatable probe shows great promise for enabling detection of the cleaved probe in the presence of high levels of nonactivated, uncleaved probe, a difficult task to attain in absorbance-based modality.
Abstract: Photoacoustic tomography is a rapidly growing imaging modality that can provide images of high spatial resolution and high contrast at depths up to 5 cm. We report here the design, synthesis, and evaluation of an activatable probe that shows great promise for enabling detection of the cleaved probe in the presence of high levels of nonactivated, uncleaved probe, a difficult task to attain in absorbance-based modality. Before the cleavage by its target, proteolytic enzyme MMP-2, the probe, an activatable cell-penetrating peptide, Ceeee[Ahx]PLGLAGrrrrrK, labeled with two chromophores, BHQ3 and Alexa750, shows photoacoustic signals of similar intensity at the two wavelengths corresponding to the absorption maxima of the chromophores, 675 and 750 nm. Subtraction of the images taken at these two wavelengths makes the probe effectively photoacoustically silent, as the signals at these two wavelengths essentially cancel out. After the cleavage, the dye associated with the cell-penetrating part of the probe, BHQ3, accumulates in the cells, while the other dye diffuses away, resulting in photoacoustic signal seen at only one of the wavelengths, 675 nm. Subtraction of the photoacoustic images at two wavelengths reveals the location of the cleaved (activated) probe. In the search for the chromophores that are best suited for photoacoustic imaging, we have investigated the photoacoustic signals of five chromophores absorbing in the near-infrared region. We have found that the photoacoustic signal did not correlate with the absorbance and fluorescence of the molecules, as the highest photoacoustic signal arose from the least absorbing quenchers, BHQ3 and QXL 680.

175 citations

Journal ArticleDOI
TL;DR: This study suggests that Au-tripods can be reliably synthesized through stringently controlled chemical synthesis and could serve as a new generation of platform with high selectivity and sensitivity for multimodality molecular imaging.
Abstract: Anisotropic colloidal hybrid nanoparticles exhibit superior optical and physical properties compared to their counterparts with regular architectures. We herein developed a controlled, stepwise strategy to build novel, anisotropic, branched, gold nanoarchitectures (Au-tripods) with predetermined composition and morphology for bioimaging. The resultant Au-tripods with size less than 20 nm showed great promise as contrast agents for in vivo photoacoustic imaging (PAI). We further identified Au-tripods with two possible configurations as high-absorbance nanomaterials from various gold multipods using a numerical simulation analysis. The PAI signals were linearly correlated with their concentrations after subcutaneous injection. The in vivo biodistribution of Au-tripods favorable for molecular imaging was confirmed using small animal positron emission tomography (PET). Intravenous administration of cyclic Arg-Gly-Asp-d-Phe-Cys (RGDfC) peptide conjugated Au-tripods (RGD-Au-tripods) to U87MG tumor-bearing mice showed PAI contrasts in tumors almost 3-fold higher than for the blocking group. PAI results correlated well with the corresponding PET images. Quantitative biodistribution data revealed that 7.9% ID/g of RGD-Au-tripods had accumulated in the U87MG tumor after 24 h post-injection. A pilot mouse toxicology study confirmed that no evidence of significant acute or systemic toxicity was observed in histopathological examination. Our study suggests that Au-tripods can be reliably synthesized through stringently controlled chemical synthesis and could serve as a new generation of platform with high selectivity and sensitivity for multimodality molecular imaging.

163 citations

Journal ArticleDOI
TL;DR: 18F-FBO-ZHER2:477 is a promising PET probe for imaging HER2 expression in living mice that has a high potential for translation to clinical applications and could clearly identify HER2-positive tumors with good contrast.
Abstract: Human epidermal growth factor receptor type 2 (HER2) is a well-established tumor biomarker that is overexpressed in a wide variety of cancers and that serves as a molecular target for therapeutic intervention. HER2 also serves as a prognostic indicator of patient survival and as a predictive marker of the response to antineoplastic therapy. The development of 18F-labeled biomolecules for PET imaging of HER2 (HER2 PET) is very important because it may provide a powerful tool for the early detection of HER2-positive tumor recurrence and for the monitoring of HER2-based tumor treatment. Methods: In this study, anti-HER2 monomeric and dimeric protein scaffold molecules [ZHER2:477 and (ZHER2:477)2, respectively] were radiofluorinated at a reasonable radiochemical yield (13%–18%) by use of site-specific oxime chemistry. The resulting radiofluorinated protein scaffold molecules were then evaluated as potential molecular probes for small-animal HER2 PET by use of a SKOV3 tumor–bearing mouse model. Results: The 4-18F-fluorobenzaldehyde conjugated aminooxy-protein scaffolds [18F-N-(4-fluorobenzylidene)oxime (FBO)-ZHER2:477 and 18F-FBO-(ZHER2:477)2] both displayed specific HER2-binding ability in vitro. Biodistribution and small-animal PET imaging studies further revealed that 18F-FBO-ZHER2:477 showed rapid and high SKOV3 tumor accumulation and quick clearance from normal tissues, whereas 18F-FBO-(ZHER2:477)2 showed poor in vivo performance (low tumor uptake and tumor-to-normal tissue ratios). The specificity of 18F-FBO-ZHER2:477 for SKOV3 tumors was confirmed by its lower uptake on pretreatment of tumor-bearing mice with the HER2-targeting agents ZHER2 and trastuzumab. Moreover, small-animal PET imaging studies revealed that 18F-FBO-ZHER2:477 produced higher-quality tumor imaging than 18F-FBO-(ZHER2:477)2. 18F-FBO-ZHER2:477 could clearly identify HER2-positive tumors with good contrast. Conclusion: Overall, these data demonstrate that 18F-FBO-ZHER2:477 is a promising PET probe for imaging HER2 expression in living mice. It has a high potential for translation to clinical applications. The radiofluorination method developed can also be used as a general strategy for the site-specific labeling of other proteins with 18F. The protein scaffold molecules used here are attractive for the further development of PET probes for other molecular targets.

116 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
01 Feb 2013-Science
TL;DR: Although not yet providing compelling mechanical strength or electrical or thermal conductivities for many applications, CNT yarns and sheets already have promising performance for applications including supercapacitors, actuators, and lightweight electromagnetic shields.
Abstract: Worldwide commercial interest in carbon nanotubes (CNTs) is reflected in a production capacity that presently exceeds several thousand tons per year. Currently, bulk CNT powders are incorporated in diverse commercial products ranging from rechargeable batteries, automotive parts, and sporting goods to boat hulls and water filters. Advances in CNT synthesis, purification, and chemical modification are enabling integration of CNTs in thin-film electronics and large-area coatings. Although not yet providing compelling mechanical strength or electrical or thermal conductivities for many applications, CNT yarns and sheets already have promising performance for applications including supercapacitors, actuators, and lightweight electromagnetic shields.

4,596 citations

Journal ArticleDOI
23 Mar 2012-Science
TL;DR: A review of the state of the art of photoacoustic tomography for both biological and clinical studies can be found in this paper, where the authors discuss the current state-of-the-art and discuss future prospects.
Abstract: Photoacoustic tomography (PAT) can create multiscale multicontrast images of living biological structures ranging from organelles to organs. This emerging technology overcomes the high degree of scattering of optical photons in biological tissue by making use of the photoacoustic effect. Light absorption by molecules creates a thermally induced pressure jump that launches ultrasonic waves, which are received by acoustic detectors to form images. Different implementations of PAT allow the spatial resolution to be scaled with the desired imaging depth in tissue while a high depth-to-resolution ratio is maintained. As a rule of thumb, the achievable spatial resolution is on the order of 1/200 of the desired imaging depth, which can reach up to 7 centimeters. PAT provides anatomical, functional, metabolic, molecular, and genetic contrasts of vasculature, hemodynamics, oxygen metabolism, biomarkers, and gene expression. We review the state of the art of PAT for both biological and clinical studies and discuss future prospects.

3,518 citations

Journal ArticleDOI
TL;DR: This Perspective explores and explains the fundamental dogma of nanoparticle delivery to tumours and answers two central questions: ‘ how many nanoparticles accumulate in a tumour?’ and ‘how does this number affect the clinical translation of nanomedicines?'
Abstract: This Perspective explores and explains the fundamental dogma of nanoparticle delivery to tumours and answers two central questions: ‘how many nanoparticles accumulate in a tumour?’ and ‘how does this number affect the clinical translation of nanomedicines?’

3,335 citations

Journal ArticleDOI
TL;DR: The effects of the strategic incorporation of fluorine in drug molecules and applications in positron emission tomography are provided, as well as new synthetic methodologies that allow more facile access to a wide range of fluorinated compounds.
Abstract: The role of fluorine in drug design and development is expanding rapidly as we learn more about the unique properties associated with this unusual element and how to deploy it with greater sophistication. The judicious introduction of fluorine into a molecule can productively influence conformation, pKa, intrinsic potency, membrane permeability, metabolic pathways, and pharmacokinetic properties. In addition, 18F has been established as a useful positron emitting isotope for use with in vivo imaging technology that potentially has extensive application in drug discovery and development, often limited only by convenient synthetic accessibility to labeled compounds. The wide ranging applications of fluorine in drug design are providing a strong stimulus for the development of new synthetic methodologies that allow more facile access to a wide range of fluorinated compounds. In this review, we provide an update on the effects of the strategic incorporation of fluorine in drug molecules and applications in po...

2,149 citations