scispace - formally typeset
Search or ask a question
Author

Jeng Shiun Lim

Other affiliations: Universiti Teknologi Petronas
Bio: Jeng Shiun Lim is an academic researcher from Universiti Teknologi Malaysia. The author has contributed to research in topics: Renewable energy & Pinch analysis. The author has an hindex of 25, co-authored 119 publications receiving 2751 citations. Previous affiliations of Jeng Shiun Lim include Universiti Teknologi Petronas.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present the state-of-the-art on thermo-chemical and bio-chemical technologies to convert rice husk and rice straw into energy.
Abstract: Volatile oil price and growing emphasis on environmental conservation have stimulated the development and utilisation of biomass as a vital source of renewable energy. In reducing the global dependency on fossil fuels, rice husk and rice straw which are the widely abundant agricultural wastes from the rice industry have a vital role to play. This paper reviews the key aspects of the utilisation of rice husk and rice straw as important sources of renewable energy. The paper provides some essential background information that includes the physical and chemical characteristics that dictates the quality of these rice biomasses. This paper also describes the various chemical and physical pretreatment techniques that can facilitate handling and transportation of rice straw and husk. Finally, the paper presents the state-of-the-art on thermo-chemical and bio-chemical technologies to convert rice husk and rice straw into energy.

520 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented the potential of biogas from the organic waste obtained from the farm animals and slaughterhouses in Malaysia in 2012, which could provide an electricity generation of 8.27×10 9 9 ǫkWh year −1.
Abstract: Anaerobic digestion of renewable feedstocks has been known as a prospective technology for the production of clean energy in the form of biogas. Biogas is a sustainable energy carrier which is mainly composed of methane (60%) and carbon dioxide (35–40%). Among the raw substances, organic matters obtained from farm animal waste are pivotal sources for biogas production. In recent years, the number of animal husbandry has drastically grown in Malaysia. Accordingly, a large amount of animal waste including manure, blood and rumen content are produced which provide a tremendous source of biogas generation. This paper presents biogas potential from the organic waste obtained from the farm animals and slaughterhouses in Malaysia. The findings of this study indicated that biogas potential of 4589.49 million m 3 year − 1 could be produced from animal waste in Malaysia in 2012 which could provide an electricity generation of 8.27×10 9 kWh year −1 .

258 citations

Journal ArticleDOI
TL;DR: Overall, this review provides preliminary guidelines, research gaps and recommendations for developing a better and more user-friendly DG energy planning optimisation tool.
Abstract: An overview of numerical and mathematical modelling-based distributed generation (DG) system optimisation techniques is presented in this review paper. The objective is to compare different aspects of these two broad classes of DG optimisation techniques, explore their applications, and identify potential research directions from reviewed studies. Introductory descriptions of general electrical power system and DG system are first provided, followed by reviews on renewable resource assessment, load demand analysis, model formulation, and optimisation techniques. In renewable resource assessment model review, uncertain solar and wind energy resources are emphasised whereas applications of forecasting models have been highlighted based on their prediction horizons, computational power requirement, and training data intensity. For DG optimisation framework, (solar, wind and tidal) power generator, energy storage and energy balance models are discussed; in optimisation technique section, both numerical and mathematical modelling optimisation methods are reviewed, analysed and criticised with recommendations for their improvements. In overall, this review provides preliminary guidelines, research gaps and recommendations for developing a better and more user-friendly DG energy planning optimisation tool.

221 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the carbon dioxide separation technologies and those related to ionic liquid (IL) in pre-combustion capture, pre-caption capture research progress, pilot plant and commercial facilities, as well as modelling approach with special focus on the computer-aided molecular design (CAMD).

204 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a mixed integer linear programming (MILP) model to predict the best mix of waste treatment technologies, forecast the production of byproduct from waste treatment process, estimate the facility capacity, and eventually generate an optimal cost-effective solution for municipal solid waste management (MSWM).

152 citations


Cited by
More filters
01 Jan 2016

1,633 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review different approaches, technologies, and strategies to manage large-scale schemes of variable renewable electricity such as solar and wind power, considering both supply and demand side measures.
Abstract: The paper reviews different approaches, technologies, and strategies to manage large-scale schemes of variable renewable electricity such as solar and wind power. We consider both supply and demand side measures. In addition to presenting energy system flexibility measures, their importance to renewable electricity is discussed. The flexibility measures available range from traditional ones such as grid extension or pumped hydro storage to more advanced strategies such as demand side management and demand side linked approaches, e.g. the use of electric vehicles for storing excess electricity, but also providing grid support services. Advanced batteries may offer new solutions in the future, though the high costs associated with batteries may restrict their use to smaller scale applications. Different “P2Y”-type of strategies, where P stands for surplus renewable power and Y for the energy form or energy service to which this excess in converted to, e.g. thermal energy, hydrogen, gas or mobility are receiving much attention as potential flexibility solutions, making use of the energy system as a whole. To “functionalize” or to assess the value of the various energy system flexibility measures, these need often be put into an electricity/energy market or utility service context. Summarizing, the outlook for managing large amounts of RE power in terms of options available seems to be promising.

1,180 citations

Proceedings Article
27 Aug 1984

954 citations

01 Dec 1976
TL;DR: A simple method of estimating the average daily radiation for each calendar month on surfaces facing directly towards the equator has been presented by Liu and Jordan as discussed by the authors, verified with experimental measurements and extended to allow calculation of monthly average radiation on surfaces of a wide range of orientations.
Abstract: Several simplified design procedures for solar energy systems require monthly average meteorological data. Monthly average daily totals of the solar radiation incident on a horizontal surface are available. However, radiation data on tilted surfaces, required by the design procedures, are generally not available. A simple method of estimating the average daily radiation for each calendar month on surfaces facing directly towards the equator has been presented by Liu and Jordan [1]. This method is verified with experimental measurements and extended to allow calculation of monthly average radiation on surfaces of a wide range of orientations.

650 citations

Journal ArticleDOI
TL;DR: The use of rice husk (RH), an agricultural waste, is abundantly available in rice producing countries like China, India, Bangladesh, Brazil, US, Cambodia, Vietnam, Myanmar, and South East Asia as mentioned in this paper.
Abstract: Rice husk (RH), an agricultural waste, is abundantly available in rice producing countries like China, India, Bangladesh, Brazil, US, Cambodia, Vietnam, Myanmar, and South East Asia. Despite the massive amount of annual production worldwide, so far RHs have been recycled only for low-value applications. In recent years, many rice mills in rice producing countries have started using RH for the energy production for mill operations as well as household lighting in rural regions. Burning of RHs produces the rice husk ash (RHA). The disposal in landfills or open fields can be problematic and may cause a serious environmental and human health related problems due to the low bulk density of RHA. Several ways are being thought of for disposing RHA by making its commercial use. The amorphous silica forms the main component (83–90%) of RHA. The amorphous silica rich RHA has wide range of applications. High-value applications and current research investigations such as the use of RHA in manufacturing of silica gels, silicon chip, synthesis of activated carbon and silica, production of light weight construction materials and insulation, catalysts, zeolites, ingredients for lithium ion batteries, graphene, energy storage/capacitor, carbon capture, and in drug delivery vehicles are presented. Use of RHA in potential future applications is also discussed. It is suggested that the amorphous silica rich RHA could become a potential resource of low cost precursor for the production of value-added silica based materials for practical applications.

484 citations