scispace - formally typeset
Author

Jeng-Shyang Pan

Bio: Jeng-Shyang Pan is an academic researcher from Shandong University of Science and Technology. The author has contributed to research in topic(s): Digital watermarking & Watermark. The author has an hindex of 50, co-authored 789 publication(s) receiving 11645 citation(s). Previous affiliations of Jeng-Shyang Pan include National Kaohsiung Normal University & Technical University of Ostrava.


Papers
More filters
Journal Article

[...]

TL;DR: Experimental results using six test functions demonstrate that CSO has much better performance than Particle Swarm Optimization (PSO).
Abstract: In this paper, we present a new algorithm of swarm intelligence, namely, Cat Swarm Optimization (CSO). CSO is generated by observing the behaviors of cats, and composed of two sub-models, i.e., tracing mode and seeking mode, which model upon the behaviors of cats. Experimental results using six test functions demonstrate that CSO has much better performance than Particle Swarm Optimization (PSO).

371 citations

Journal ArticleDOI

[...]

TL;DR: An innovative watermarking scheme based on genetic algorithms (GA) in the transform domain is proposed, which is robust againstWatermarking attacks, and the improvement in watermarked image quality with GA.
Abstract: An innovative watermarking scheme based on genetic algorithms (GA) in the transform domain is proposed. It is robust against watermarking attacks, which are commonly employed in the literature. In addition, the watermarked image quality is also considered. In this paper, we employ GA for optimizing both the fundamentally conflicting requirements. Watermarking with GA is easy for implementation. We also examine the effectiveness of our scheme by checking the fitness function in GA, which includes both factors related to robustness and invisibility. Simulation results also show both the robustness under attacks, and the improvement in watermarked image quality with GA.

327 citations

Journal ArticleDOI

[...]

TL;DR: A hybrid PSO algorithm is proposed, called DNSPSO, which employs a diversity enhancing mechanism and neighborhood search strategies to achieve a trade-off between exploration and exploitation abilities.
Abstract: Particle Swarm Optimization (PSO) has shown an effective performance for solving variant benchmark and real-world optimization problems. However, it suffers from premature convergence because of quick losing of diversity. In order to enhance its performance, this paper proposes a hybrid PSO algorithm, called DNSPSO, which employs a diversity enhancing mechanism and neighborhood search strategies to achieve a trade-off between exploration and exploitation abilities. A comprehensive experimental study is conducted on a set of benchmark functions, including rotated multimodal and shifted high-dimensional problems. Comparison results show that DNSPSO obtains a promising performance on the majority of the test problems.

317 citations

Journal ArticleDOI

[...]

01 Jan 2009
TL;DR: An enhanced Artificial Bee Colony (ABC) optimization algorithm, which is called the Interactive ArtificialBee Colony (IABC) optimization, for numerical optimiza- tion problems, is proposed in this paper and the experimental results manifest the superiority in accuracy of the proposed IABC to other methods.
Abstract: An enhanced Artificial Bee Colony (ABC) optimization algorithm, which is called the Interactive Artificial Bee Colony (IABC) optimization, for numerical optimiza- tion problems, is proposed in this paper. The onlooker bee is designed to move straightly to the picked coordinate indicated by the employed bee and evaluates the fitness values near it in the original Artificial Bee Colony algorithm in order to reduce the computa- tional complexity. Hence, the exploration capacity of the ABC is constrained in a zone. Based on the framework of the ABC, the IABC introduces the concept of universal grav- itation into the consideration of the affection between employed bees and the onlooker bees. By assigning different values of the control parameter, the universal gravitation should be involved for the IABC when there are various quantities of employed bees and the single onlooker bee. Therefore, the exploration ability is redeemed about on average in the IABC. Five benchmark functions are simulated in the experiments in order to com- pare the accuracy/quality of the IABC, the ABC and the PSO. The experimental results manifest the superiority in accuracy of the proposed IABC to other methods.

226 citations

Journal Article

[...]

TL;DR: A parallel version of the particle swarm optimization (PPSO) algorithm together with three communication strategies which can be used according to the independence of the data, which demonstrates the usefulness of the proposed PPSO algorithm.
Abstract: Particle swarm optimization (PSO) is an alternative population-based evolutionary computation technique. It has been shown to be capable of optimizing hard mathematical problems in continuous or binary space. We present here a parallel version of the particle swarm optimization (PPSO) algorithm together with three communication strategies which can be used according to the independence of the data. The first strategy is designed for solution parameters that are independent or are only loosely correlated, such as the Rosenbrock and Rastrigrin functions. The second communication strategy can be applied to parameters that are more strongly correlated such as the Griewank function. In cases where the properties of the parameters are unknown, a third hybrid communication strategy can be used. Experimental results demonstrate the usefulness of the proposed PPSO algorithm.

216 citations


Cited by
More filters
Journal ArticleDOI

[...]

TL;DR: It is proved the convergence of a recursive mean shift procedure to the nearest stationary point of the underlying density function and, thus, its utility in detecting the modes of the density.
Abstract: A general non-parametric technique is proposed for the analysis of a complex multimodal feature space and to delineate arbitrarily shaped clusters in it. The basic computational module of the technique is an old pattern recognition procedure: the mean shift. For discrete data, we prove the convergence of a recursive mean shift procedure to the nearest stationary point of the underlying density function and, thus, its utility in detecting the modes of the density. The relation of the mean shift procedure to the Nadaraya-Watson estimator from kernel regression and the robust M-estimators; of location is also established. Algorithms for two low-level vision tasks discontinuity-preserving smoothing and image segmentation - are described as applications. In these algorithms, the only user-set parameter is the resolution of the analysis, and either gray-level or color images are accepted as input. Extensive experimental results illustrate their excellent performance.

11,014 citations

Book

[...]

24 Oct 2001
TL;DR: Digital Watermarking covers the crucial research findings in the field and explains the principles underlying digital watermarking technologies, describes the requirements that have given rise to them, and discusses the diverse ends to which these technologies are being applied.
Abstract: Digital watermarking is a key ingredient to copyright protection. It provides a solution to illegal copying of digital material and has many other useful applications such as broadcast monitoring and the recording of electronic transactions. Now, for the first time, there is a book that focuses exclusively on this exciting technology. Digital Watermarking covers the crucial research findings in the field: it explains the principles underlying digital watermarking technologies, describes the requirements that have given rise to them, and discusses the diverse ends to which these technologies are being applied. As a result, additional groundwork is laid for future developments in this field, helping the reader understand and anticipate new approaches and applications.

2,849 citations

[...]

01 Jan 2011

2,013 citations

Posted Content

[...]

TL;DR: This paper defines and explores proofs of retrievability (PORs), a POR scheme that enables an archive or back-up service to produce a concise proof that a user can retrieve a target file F, that is, that the archive retains and reliably transmits file data sufficient for the user to recover F in its entirety.
Abstract: In this paper, we define and explore proofs of retrievability (PORs). A POR scheme enables an archive or back-up service (prover) to produce a concise proof that a user (verifier) can retrieve a target file F, that is, that the archive retains and reliably transmits file data sufficient for the user to recover F in its entirety.A POR may be viewed as a kind of cryptographic proof of knowledge (POK), but one specially designed to handle a large file (or bitstring) F. We explore POR protocols here in which the communication costs, number of memory accesses for the prover, and storage requirements of the user (verifier) are small parameters essentially independent of the length of F. In addition to proposing new, practical POR constructions, we explore implementation considerations and optimizations that bear on previously explored, related schemes.In a POR, unlike a POK, neither the prover nor the verifier need actually have knowledge of F. PORs give rise to a new and unusual security definition whose formulation is another contribution of our work.We view PORs as an important tool for semi-trusted online archives. Existing cryptographic techniques help users ensure the privacy and integrity of files they retrieve. It is also natural, however, for users to want to verify that archives do not delete or modify files prior to retrieval. The goal of a POR is to accomplish these checks without users having to download the files themselves. A POR can also provide quality-of-service guarantees, i.e., show that a file is retrievable within a certain time bound.

1,655 citations

Proceedings Article

[...]

01 Jan 1999

1,641 citations