scispace - formally typeset
Search or ask a question
Author

Jenna K. Shagoury

Bio: Jenna K. Shagoury is an academic researcher from Harvard University. The author has contributed to research in topics: Hypogonadotropic hypogonadism & Candidate gene. The author has an hindex of 5, co-authored 5 publications receiving 2910 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Puberty is initiated when gonadotropin-releasing hormone begins to be secreted by the hypothalamus, and complementary genetic approaches in humans and mice identified genetic factors that determine the onset of puberty.
Abstract: Background Puberty, a complex biologic process involving sexual development, accelerated linear growth, and adrenal maturation, is initiated when gonadotropin-releasing hormone begins to be secreted by the hypothalamus. We conducted studies in humans and mice to identify the genetic factors that determine the onset of puberty. Methods We used complementary genetic approaches in humans and in mice. A consanguineous family with members who lacked pubertal development (idiopathic hypogonadotropic hypogonadism) was examined for mutations in a candidate gene, GPR54, which encodes a G protein–coupled receptor. Functional differences between wild-type and mutant GPR54 were examined in vitro. In parallel, a Gpr54-deficient mouse model was created and phenotyped. Responsiveness to exogenous gonadotropin-releasing hormone was assessed in both the humans and the mice. Results Affected patients in the index pedigree were homozygous for an L148S mutation in GPR54, and an unrelated proband with idiopathic hypogonadotro...

2,253 citations

Journal ArticleDOI
TL;DR: Mutations in GPR54, a G protein-coupled receptor gene, cause autosomal recessive idiopathic hypogonadotropic hypogOnadism in humans and mice, suggesting that this receptor is essential for normal gonadotropin-releasing hormone physiology and for puberty.
Abstract: The first known step in sexual maturation at puberty is the secretion of gonadotropin-releasing hormone (GnRH) by the hypothalamus. Pubertal changes also include accelerated linear growth and adrenal maturation. The authors used complementary genetic approaches in both humans and mice to study a gen

754 citations

Journal ArticleDOI
TL;DR: Rare variants in GNRHR are more common than GPR54 in a nIHH population, characterized by mode of inheritance, testicular volume, and presence or absence of endogenous LH pulsations.
Abstract: Objective: To determine the frequency of rare nucleotide variants in GNRHR and GPR54 in a large cohort of probands (n=166) with normosmic idiopathic hypogonadotropic hypogonadism (nIHH), characterized by mode of inheritance, testicular volume, and presence or absence of endogenous LH pulsations. Methods: Whenever possible, probands answered detailed questionnaires, underwent full physical exams, and underwent q 10-min frequent blood sampling for LH. Exons segments for GNRHR and GPR54 were screened for mutations. Nucleotide changes were identified as rare variants if they occurred at less than 1% frequency in an ethnically matched control population. Results: Sixty-two percent of male probands were classified as sporadic, meaning that no other family members had delayed puberty or nIHH. In contrast, 61% of female probands were from familial pedigrees, with either autosomal dominant or autosomal recessive inheritance. Patients displayed a broad spectrum of disease severity based on testicular size and endogenous LH pulsations. Twenty-four rare variants were identified in GNRHR (within 15 probands) and seven rare variants in GPR54 (within five probands). Conclusions: Rare variants in GNRHR are more common than GPR54 in a nIHH population.

71 citations

Journal ArticleDOI
TL;DR: Genetic analysis has excluded sequence variations in GNRH1 and GNRHR in four families with recessive IHH, suggesting the existence of a novel, as-yet-undiscovered gene for this condition, and haplotype analysis is the preferred genetic methodology to eliminate the role of specific candidate genes.
Abstract: Failure of the normal pattern of episodic secretion of GnRH from the hypothalamus results in the clinical syndrome of idiopathic hypogonadotropic hypogonadism (IHH), with failure of pubertal development and infertility. The only gene that has been implicated in normosmic IHH is the GnRH receptor gene (GNRHR), which accounts for 10% of cases. This report presents four families with autosomal recessive IHH, including a consanguineous pedigree from the Middle East. Defects within the genomic coding sequence of the GNRHR, and the GnRH gene itself, GNRH1, were excluded by temperature gradient gel electrophoresis, direct sequencing, and haplotypes created from simple sequence polymorphisms flanking the GNRH1 and GNRHR loci. We concluded that: 1) genetic analysis has excluded sequence variations in GNRH1 and GNRHR in four families with recessive IHH, suggesting the existence of a novel, as-yet-undiscovered gene for this condition, and 2) because mutation analysis of genomic coding sequence will fail to detect mutations deep within introns or regulatory regions, haplotype analysis is the preferred genetic methodology to eliminate the role of specific candidate genes.

40 citations

Journal ArticleDOI
TL;DR: To identify a novel disease locus for IHH, a genome wide scan was performed on a large, consanguineous Saudi family with 6 affected individuals and linkage over a 1.06 Mb interval on chromosome 19p13.3 was established.
Abstract: Idiopathic hypogonadotropic hypogonadism (IHH) is traditionally established by 1) the absence of spontaneous pubertal development by age 18 yr and 2) low sex steroids with inappropriately low gonadotropins in the absence of any functional or anatomic cause. To identify a novel disease locus for IHH, a genome wide scan was performed on a large, consanguineous Saudi family with 6 affected individuals. Linkage over a 1.06 Mb interval on chromosome 19p13.3 was established with a maximal two point LOD score of 5.17. Because numerous genes and hypothetical proteins are mapped to this region, further studies will be necessary to determine the precise genetic defect in this family.

13 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Puberty is initiated when gonadotropin-releasing hormone begins to be secreted by the hypothalamus, and complementary genetic approaches in humans and mice identified genetic factors that determine the onset of puberty.
Abstract: Background Puberty, a complex biologic process involving sexual development, accelerated linear growth, and adrenal maturation, is initiated when gonadotropin-releasing hormone begins to be secreted by the hypothalamus. We conducted studies in humans and mice to identify the genetic factors that determine the onset of puberty. Methods We used complementary genetic approaches in humans and in mice. A consanguineous family with members who lacked pubertal development (idiopathic hypogonadotropic hypogonadism) was examined for mutations in a candidate gene, GPR54, which encodes a G protein–coupled receptor. Functional differences between wild-type and mutant GPR54 were examined in vitro. In parallel, a Gpr54-deficient mouse model was created and phenotyped. Responsiveness to exogenous gonadotropin-releasing hormone was assessed in both the humans and the mice. Results Affected patients in the index pedigree were homozygous for an L148S mutation in GPR54, and an unrelated proband with idiopathic hypogonadotro...

2,253 citations

Journal ArticleDOI
TL;DR: A much more complete understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability, can be much better translated to human health.
Abstract: The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans-especially during development-may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the evidence for endocrine health-related actions of EDCs. Based on this much more complete understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability, these findings can be much better translated to human health. Armed with this information, researchers, physicians, and other healthcare providers can guide regulators and policymakers as they make responsible decisions.

1,423 citations

Journal ArticleDOI
TL;DR: GPR54 is defined as a major control point in the reproductive axis and kisspeptin is suggested to be a neurohormonal effector, demonstrating that a key action ofkisspeptin on the hypothalamo-pituitary-gonadal axis occurs directly at the level of GnRH release.
Abstract: We have recently described a molecular gatekeeper of the hypothalamic-pituitary-gonadal axis with the observation that G protein-coupled receptor 54 (GPR54) is required in mice and men for the pubertal onset of pulsatile luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion to occur. In the present study, we investigate the possible central mode of action of GPR54 and kisspeptin ligand. First, we show that GPR54 transcripts are colocalized with gonadotropin-releasing hormone (GnRH) neurons in the mouse hypothalamus, suggesting that kisspeptin, the GPR54 ligand, may act directly on these neurons. Next, we show that GnRH neurons seem anatomically normal in gpr54–/– mice, and that they show projections to the median eminence, which demonstrates that the hypogonadism in gpr54–/– mice is not due to an abnormal migration of GnRH neurons (as occurs with KAL1 mutations), but that it is more likely due to a lack of GnRH release or absence of GnRH neuron stimulation. We also show that levels of kisspeptin injected i.p., which stimulate robust LH and FSH release in wild-type mice, have no effect in gpr54–/– mice, and therefore that kisspeptin acts directly and uniquely by means of GPR54 signaling for this function. Finally, we demonstrate by direct measurement, that the central administration of kisspeptin intracerebroventricularly in sheep produces a dramatic release of GnRH into the cerebrospinal fluid, with a parallel rise in serum LH, demonstrating that a key action of kisspeptin on the hypothalamo-pituitary-gonadal axis occurs directly at the level of GnRH release. The localization and GnRH release effects of kisspeptin thus define GPR54 as a major control point in the reproductive axis and suggest kisspeptin to be a neurohormonal effector.

1,129 citations

Journal ArticleDOI
TL;DR: Great strides have been made in understanding male reproductive physiology; the combined efforts of scientists, clinicians, industry and governmental funding agencies could make an effective, reversible, male contraceptive an option for family planning over the next decade.
Abstract: Despite significant advances in contraceptive options for women over the last 50 yr, world population continues to grow rapidly. Scientists and activists alike point to the devastating environmental impacts that population pressures have caused, including global warming from the developed world and hunger and disease in less developed areas. Moreover, almost half of all pregnancies are still unwanted or unplanned. Clearly, there is a need for expanded, reversible, contraceptive options. Multicultural surveys demonstrate the willingness of men to participate in contraception and their female partners to trust them to do so. Notwithstanding their paucity of options, male methods including vasectomy and condoms account for almost one third of contraceptive use in the United States and other countries. Recent international clinical research efforts have demonstrated high efficacy rates (90-95%) for hormonally based male contraceptives. Current barriers to expanded use include limited delivery methods and perceived regulatory obstacles, which stymie introduction to the marketplace. However, advances in oral and injectable androgen delivery are cause for optimism that these hurdles may be overcome. Nonhormonal methods, such as compounds that target sperm motility, are attractive in their theoretical promise of specificity for the reproductive tract. Gene and protein array technologies continue to identify potential targets for this approach. Such nonhormonal agents will likely reach clinical trials in the near future. Great strides have been made in understanding male reproductive physiology; the combined efforts of scientists, clinicians, industry and governmental funding agencies could make an effective, reversible, male contraceptive an option for family planning over the next decade.

1,121 citations