scispace - formally typeset
Search or ask a question
Author

Jennifer E. Curtis

Bio: Jennifer E. Curtis is an academic researcher from Georgia Institute of Technology. The author has contributed to research in topics: Optical tweezers & Nanolithography. The author has an hindex of 23, co-authored 69 publications receiving 3602 citations. Previous affiliations of Jennifer E. Curtis include Heidelberg University & Max Planck Society.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors describe methods for creating large numbers of high-quality optical traps in arbitrary three-dimensional configurations and for dynamically reconfiguring them under computer control, allowing for mixed arrays of traps based on different modes of light, including optical vortices, axial line traps, optical bottles and optical rotators.

1,488 citations

Journal ArticleDOI
TL;DR: Measurements of optical vortices created with the dynamic holographic optical tweezer technique reveal an unsuspected dependence of their structure and angular momentum flux on their helicity, and provide evidence for a novel optical ratchet potential in practical opticalvortices.
Abstract: Helical modes of light can be focused into toroidal optical traps known as optical vortices, which are capable of localizing and applying torques to small volumes of matter. Measurements of optical vortices created with the dynamic holographic optical tweezer technique reveal an unsuspected dependence of their structure and angular momentum flux on their helicity. These measurements also provide evidence for a novel optical ratchet potential in practical optical vortices.

614 citations

Journal ArticleDOI
TL;DR: It is demonstrated that vinculin is not required for transmission of adhesive and traction forces but is necessary for myosin contractility-dependent adhesion strength and traction force and for the coupling of cell area and tractionforce.
Abstract: Focal adhesions mediate force transfer between ECM-integrin complexes and the cytoskeleton. Although vinculin has been implicated in force transmission, few direct measurements have been made, and there is little mechanistic insight. Using vinculin-null cells expressing vinculin mutants, we demonstrate that vinculin is not required for transmission of adhesive and traction forces but is necessary for myosin contractility-dependent adhesion strength and traction force and for the coupling of cell area and traction force. Adhesion strength and traction forces depend differentially on vinculin head (VH) and tail domains. VH enhances adhesion strength by increasing ECM-bound integrin–talin complexes, independently from interactions with vinculin tail ligands and contractility. A full-length, autoinhibition-deficient mutant (T12) increases adhesion strength compared with VH, implying roles for both vinculin activation and the actin-binding tail. In contrast to adhesion strength, vinculin-dependent traction forces absolutely require a full-length and activated molecule; VH has no effect. Physical linkage of the head and tail domains is required for maximal force responses. Residence times of vinculin in focal adhesions, but not T12 or VH, correlate with applied force, supporting a mechanosensitive model for vinculin activation in which forces stabilize vinculin’s active conformation to promote force transfer.

213 citations

Journal ArticleDOI
TL;DR: An implementation of modulated optical vortices based on the dynamic holographic optical tweezer technique is described, whose dynamically reconfigurable intensity distributions provide new opportunities for controlling motion in mesoscopic systems.
Abstract: Single-beam optical gradient force traps created by focusing helical modes of light are known as optical vortices. Modulating the helical pitch of such a mode's wave front yields a new class of optical traps whose dynamically reconfigurable intensity distributions provide new opportunities for controlling motion in mesoscopic systems. An implementation of modulated optical vortices based on the dynamic holographic optical tweezer technique is described.

175 citations

Journal ArticleDOI
TL;DR: By performing localized field cooling with the hot tip of a scanning probe microscope, magnetic structures are reversibly patterned without modifying the film chemistry and topography, which opens unforeseen possibilities for the development of novel metamaterials with finely tuned magnetic properties, such as reconfigured magneto-plasmonic and magnonic crystals.
Abstract: The search for novel tools to control magnetism at the nanoscale is crucial for the development of new paradigms in optics, electronics and spintronics. So far, the fabrication of magnetic nanostructures has been achieved mainly through irreversible structural or chemical modifications. Here, we propose a new concept for creating reconfigurable magnetic nanopatterns by crafting, at the nanoscale, the magnetic anisotropy landscape of a ferromagnetic layer exchange-coupled to an antiferromagnetic layer. By performing localized field cooling with the hot tip of a scanning probe microscope, magnetic structures, with arbitrarily oriented magnetization and tunable unidirectional anisotropy, are reversibly patterned without modifying the film chemistry and topography. This opens unforeseen possibilities for the development of novel metamaterials with finely tuned magnetic properties, such as reconfigurable magneto-plasmonic and magnonic crystals. In this context, we experimentally demonstrate spatially controlled spin wave excitation and propagation in magnetic structures patterned with the proposed method.

145 citations


Cited by
More filters
Journal ArticleDOI
14 Aug 2003-Nature
TL;DR: This research presents the next generation of single-beam optical traps, which promise to take optical tweezers out of the laboratory and into the mainstream of manufacturing and diagnostics and even become consumer products.
Abstract: Optical tweezers use the forces exerted by a strongly focused beam of light to trap and move objects ranging in size from tens of nanometres to tens of micrometres. Since their introduction in 1986, the optical tweezer has become an important tool for research in the fields of biology, physical chemistry and soft condensed matter physics. Recent advances promise to take optical tweezers out of the laboratory and into the mainstream of manufacturing and diagnostics; they may even become consumer products. The next generation of single-beam optical traps offers revolutionary new opportunities for fundamental and applied research.

4,647 citations

Journal ArticleDOI
TL;DR: Approaches, Derivatives and Applications Vasilios Georgakilas,† Michal Otyepka,‡ Athanasios B. Bourlinos,† Vimlesh Chandra, Namdong Kim, K. Kim,§,⊥ Radek Zboril,*,‡ and Kwang S. Kim.
Abstract: Approaches, Derivatives and Applications Vasilios Georgakilas,† Michal Otyepka,‡ Athanasios B. Bourlinos,‡ Vimlesh Chandra, Namdong Kim, K. Christian Kemp, Pavel Hobza,‡,§,⊥ Radek Zboril,*,‡ and Kwang S. Kim* †Institute of Materials Science, NCSR “Demokritos”, Ag. Paraskevi Attikis, 15310 Athens, Greece ‡Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology, San 31, Hyojadong, Namgu, Pohang 790-784, Korea Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo naḿ. 2, 166 10 Prague 6, Czech Republic

3,460 citations

Journal ArticleDOI
TL;DR: The fact that light carries both linear and angular momentum is well-known to physicists as discussed by the authors, and one application of the linear momentum of light is for optical tweezers, in which the refraction of a laser beam through a particle provides a reaction force that draws the particle towards the centre of the beam.
Abstract: The fact that light carries both linear and angular momentum is well-known to physicists. One application of the linear momentum of light is for optical tweezers, in which the refraction of a laser beam through a particle provides a reaction force that draws the particle towards the centre of the beam. The angular momentum of light can also be transfered to particles, causing them to spin. In fact, the angular momentum of light has two components that act through different mechanisms on various types of particle. This Review covers the creation of such beams and how their unusual intensity, polarization and phase structure has been put to use in the field of optical manipulation.

1,679 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of the fundamental origins and important applications of the main spin-orbit interaction phenomena in modern optics that play a crucial role at subwavelength scales, including spin-Hall effects in inhomogeneous media and at optical interfaces, spindependent effects in non-paraxial (focused or scattered) fields, spin-controlled shaping of light using anisotropic structured interfaces (metasurfaces).
Abstract: This Review article provides an overview of the fundamental origins and important applications of the main spin–orbit interaction phenomena in modern optics that play a crucial role at subwavelength scales. Light carries both spin and orbital angular momentum. These dynamical properties are determined by the polarization and spatial degrees of freedom of light. Nano-optics, photonics and plasmonics tend to explore subwavelength scales and additional degrees of freedom of structured — that is, spatially inhomogeneous — optical fields. In such fields, spin and orbital properties become strongly coupled with each other. In this Review we cover the fundamental origins and important applications of the main spin–orbit interaction phenomena in optics. These include: spin-Hall effects in inhomogeneous media and at optical interfaces, spin-dependent effects in nonparaxial (focused or scattered) fields, spin-controlled shaping of light using anisotropic structured interfaces (metasurfaces) and robust spin-directional coupling via evanescent near fields. We show that spin–orbit interactions are inherent in all basic optical processes, and that they play a crucial role in modern optics.

1,642 citations

Journal ArticleDOI
TL;DR: A detailed review on the advances of chemical functionalization of graphene is presented in this article, where the surface modification of graphene oxide followed by reduction has been carried out to obtain functionalized graphene.

1,517 citations