scispace - formally typeset
Search or ask a question
Author

Jennifer E. Roberts

Bio: Jennifer E. Roberts is an academic researcher from Jet Propulsion Laboratory. The author has contributed to research in topics: Adaptive optics & Deformable mirror. The author has an hindex of 14, co-authored 25 publications receiving 477 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present the first spectrum of the companion, "kappa And B," using the Project 1640 high-contrast imaging platform, and compare the low-resolution YJH-band spectra to empirical brown dwarf spectra.
Abstract: Kappa Andromedae is a B9IVn star at 52 pc for which a faint substellar companion separated by 55 AU was recently announced. In this work, we present the first spectrum of the companion, "kappa And B," using the Project 1640 high-contrast imaging platform. Comparison of our low-resolution YJH-band spectra to empirical brown dwarf spectra suggests an early-L spectral type. Fitting synthetic spectra from PHOENIX model atmospheres to our observed spectrum allows us to constrain the effective temperature to ~2000K, as well as place constraints on the companion surface gravity. Further, we use previously reported log(g) and effective temperature measurements of the host star to argue that the kappa And system has an isochronal age of 220 +/- 100 Myr, older than the 30 Myr age reported previously. This interpretation of an older age is corroborated by the photometric properties of kappa And B, which appear to be marginally inconsistent with other 10-100 Myr low-gravity L-dwarfs for the spectral type range we derive. In addition, we use Keck aperture masking interferometry combined with published radial velocity measurements to rule out the existence of any tight stellar companions to kappa And A that might be responsible for the system's overluminosity. Further, we show that luminosity enhancements due to a nearly "pole-on" viewing angle coupled with extremely rapid rotation is unlikely. Kappa And A is thus consistent with its slightly evolved luminosity class (IV) and we propose here that kappa And, with a revised age of 220 +/- 100 Myr, is an interloper to the 30 Myr Columba association with which it was previously associated. The photometric and spectroscopic evidence for kappa And B combined with our re-assesment of the system age implies a substellar companion mass of 50^{+16}_{-13} Jupiter Masses, consistent with a brown dwarf rather than a planetary mass companion.

84 citations

Proceedings ArticleDOI
TL;DR: Project 1640 as mentioned in this paper is a high-contrast spectral imaging effort involving a coordinated set of instrumentation and software, built at AMNH, JPL, Cambridge and Caltech, and is fully operational.
Abstract: Project 1640, a high-contrast spectral-imaging effort involving a coordinated set of instrumentation and software, built at AMNH, JPL, Cambridge and Caltech, has been commissioned and is fully operational. This novel suite of instrumentation includes a 3388+241-actuator adaptive optics system, an optimized apodized pupil Lyot coronagraph, an integral field spectrograph, and an interferometric calibration wave front sensor. Project 1640 is the first of its kind of instrumentation, designed to image and characterize planetary systems around nearby stars, employing a variety of techniques to break the speckle-noise barrier. It is operational roughly one year before any similar project, with the goal of reaching a contrast of 10^(-7) at 1 arcsecond separation. We describe the instrument, highlight recent results, and document on-sky performance at the start of a 3-year, 99-night survey at the Palomar 5-m Hale telescope.

63 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported the discovery of a faint stellar companion to the A3V star zeta Virginis, which is ~7 magnitudes fainter than its host star in the H-band, and infrared imaging spanning 4.75 years over five epochs indicates this companion has common proper motion with its hoststar.
Abstract: Through the combination of high-order Adaptive Optics and coronagraphy, we report the discovery of a faint stellar companion to the A3V star zeta Virginis. This companion is ~7 magnitudes fainter than its host star in the H-band, and infrared imaging spanning 4.75 years over five epochs indicates this companion has common proper motion with its host star. Using evolutionary models, we estimate its mass to be 0.168+/-.016 solar masses, giving a mass ratio for this system q = 0.082. Assuming the two objects are coeval, this mass suggests a M4V-M7V spectral type for the companion, which is confirmed through integral field spectroscopic measurements. We see clear evidence for orbital motion from this companion and are able to constrain the semi-major axis to be greater than 24.9 AU, the period > 124$ yrs, and eccentricity > 0.16. Multiplicity studies of higher mass stars are relatively rare, and binary companions such as this one at the extreme low end of the mass ratio distribution are useful additions to surveys incomplete at such a low mass ratio. Moreover, the frequency of binary companions can help to discriminate between binary formation scenarios that predict an abundance of low-mass companions forming from the early fragmentation of a massive circumstellar disk. A system such as this may provide insight into the anomalous X-ray emission from A stars, hypothesized to be from unseen late-type stellar companions. Indeed, we calculate that the presence of this M-dwarf companion easily accounts for the X-ray emission from this star detected by ROSAT.

44 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used adaptive optics images from the Palomar, AEOS, and CFHT telescopes to derive an improved, astrometric characterization of the companion orbit.
Abstract: The nearby star Alpha Oph (Ras Alhague) is a rapidly rotating A5IV star spinning at ~89% of its breakup velocity. This system has been imaged extensively by interferometric techniques, giving a precise geometric model of the star's oblateness and the resulting temperature variation on the stellar surface. Fortuitously, Alpha Oph has a previously known stellar companion, and characterization of the orbit provides an independent, dynamically-based check of both the host star and the companion mass. Such measurements are crucial to constrain models of such rapidly rotating stars. In this study, we combine eight years of Adaptive Optics imaging data from the Palomar, AEOS, and CFHT telescopes to derive an improved, astrometric characterization of the companion orbit. We also use photometry from these observations to derive a model-based estimate of the companion mass. A fit was performed on the photocenter motion of this system to extract a component mass ratio. We find masses of 2.40^{0.23}_{0.37} solar masses and 0.85^{0.06}_{0.04} solar masses for Alpha Oph A and Alpha Oph B, respectively. Previous orbital studies of this system found a mass too high for this system, inconsistent with stellar evolutionary calculations. Our measurements of the host star mass are more consistent with these evolutionary calculations, but with slightly higher uncertainties. In addition to the dynamically-derived masses, we use IJHK photometry to derive a model-based mass for Alpha Oph B, of 0.77 +/- 0.05 solar masses marginally consistent with the dynamical masses derived from our orbit. Our model fits predict a periastron passage on 2012 April 19, with the two components having a ~50 milliarcsec separation from March to May 2012. A modest amount of interferometric and radial velocity data during this period could provide a mass determination of this star at the few percent level.

36 citations

Journal ArticleDOI
TL;DR: In this article, the authors present adaptive optics photometry and spectra in the JHKL-bands along with high spectral resolution K-band spectroscopy for each component of the Z Canis Majoris system.
Abstract: We present adaptive optics photometry and spectra in the JHKL-bands along with high spectral resolution K-band spectroscopy for each component of the Z Canis Majoris system. Our high angular resolution photometry of this very young (<1 Myr) binary, comprised of an FU Ori object and a Herbig Ae/Be star, were gathered shortly after the 2008 outburst while our high resolution spectroscopy was gathered during a quiescent phase. Our photometry conclusively determine that the outburst was due solely to the embedded Herbig Ae/Be member, supporting results from earlier works, and that the optically visible FU Ori component decreased slightly (~30%) in luminosity during the same period, consistent with previous works on the variability of FU Ori type systems. Further, our high-resolution K-band spectra definitively demonstrate that the 2.294 micron CO absorption feature seen in composite spectra of the system is due solely to the FU Ori component, while a prominent CO emission feature at the same wavelength, long suspected to be associated with the innermost regions of a circumstellar accretion disk, can be assigned to the Herbig Ae/Be member. These findings are in contrast to previous analyses (e.g. Malbet et al 2010, Benisty et al. 2010) of this complex system which assigned the CO emission to the FU Ori component.

31 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Observations ofBeta Pictoris clearly detect the planet, Beta Pictoris b, in a single 60-s exposure with minimal postprocessing, and fitting the Keplerian orbit of Beta Pic b using the new position together with previous astrometry gives a factor of 3 improvement in most parameters over previous solutions.
Abstract: The Gemini Planet Imager is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field spectrograph with low spectral resolution but high spatial resolution. Every aspect of the Gemini Planet Imager has been tuned for maximum sensitivity to faint planets near bright stars. During first-light observations, we achieved an estimated H band Strehl ratio of 0.89 and a 5-σ contrast of 10(6) at 0.75 arcseconds and 10(5) at 0.35 arcseconds. Observations of Beta Pictoris clearly detect the planet, Beta Pictoris b, in a single 60-s exposure with minimal postprocessing. Beta Pictoris b is observed at a separation of 434 ± 6 milliarcseconds (mas) and position angle 211.8 ± 0.5°. Fitting the Keplerian orbit of Beta Pic b using the new position together with previous astrometry gives a factor of 3 improvement in most parameters over previous solutions. The planet orbits at a semimajor axis of [Formula: see text] near the 3:2 resonance with the previously known 6-AU asteroidal belt and is aligned with the inner warped disk. The observations give a 4% probability of a transit of the planet in late 2017.

754 citations

Journal ArticleDOI
Bruce Macintosh1, Bruce Macintosh2, James R. Graham3, Travis Barman4, R. J. De Rosa3, Quinn Konopacky5, Mark S. Marley6, Christian Marois7, Christian Marois8, Eric L. Nielsen2, Laurent Pueyo9, Abhijith Rajan10, Julien Rameau11, Didier Saumon12, Jason J. Wang3, Jennifer Patience10, Mark Ammons1, Pauline Arriaga13, Étienne Artigau11, Steven V. W. Beckwith3, J. Brewster, Sebastian Bruzzone14, Joanna Bulger10, Joanna Bulger15, Ben Burningham6, Ben Burningham16, Adam Burrows17, Christine Chen9, Eugene Chiang3, Jeffrey Chilcote18, Rebekah I. Dawson3, Ruobing Dong3, René Doyon11, Z. H. Draper7, Gaspard Duchêne19, Gaspard Duchêne3, Thomas M. Esposito13, Daniel C. Fabrycky20, Michael P. Fitzgerald13, Katherine B. Follette2, J. J. Fortney21, B. L. Gerard7, S. Goodsell22, A. Z. Greenbaum9, P. Hibon, Sasha Hinkley23, Tara Cotten24, Li-Wei Hung13, Patrick Ingraham, M. Johnson-Groh7, Paul Kalas3, David Lafrenière11, James E. Larkin13, J. Lee24, Michael R. Line21, Douglas Long9, Jérôme Maire18, Franck Marchis, Brenda C. Matthews8, Brenda C. Matthews7, Claire E. Max21, Stanimir Metchev14, Stanimir Metchev25, Max Millar-Blanchaer18, Tushar Mittal3, Caroline V. Morley21, Katie M. Morzinski4, R. Murray-Clay26, Rebecca Oppenheimer27, Dave Palmer1, Rahul Patel25, Marshall D. Perrin9, Lisa Poyneer1, Roman R. Rafikov17, Fredrik T. Rantakyrö, Emily L. Rice27, Patricio Rojo28, Alex Rudy21, Jean-Baptiste Ruffio2, Maria Teresa Ruiz28, Naru Sadakuni29, Leslie Saddlemyer7, M. Salama3, Dmitry Savransky30, Adam C. Schneider31, Anand Sivaramakrishnan9, Inseok Song24, Rémi Soummer9, S. Thomas, Gautam Vasisht32, James K. Wallace32, Kimberly Ward-Duong10, Sloane J. Wiktorowicz21, Schuyler Wolff9, Barry Zuckerman13 
02 Oct 2015-Science
TL;DR: Using the Gemini Planet Imager, a Jupiter-like planet is discovered orbiting the ~20-million-year-old star 51 Eridani at a projected separation of 13 astronomical units and has a methane signature and is probably the smallest exoplanet that has been directly imaged.
Abstract: Directly detecting thermal emission from young extrasolar planets allows measurement of their atmospheric compositions and luminosities, which are influenced by their formation mechanisms. Using the Gemini Planet Imager, we discovered a planet orbiting the ~20-million-year-old star 51 Eridani at a projected separation of 13 astronomical units. Near-infrared observations show a spectrum with strong methane and water-vapor absorption. Modeling of the spectra and photometry yields a luminosity (normalized by the luminosity of the Sun) of 1.6 to 4.0 × 10(-6) and an effective temperature of 600 to 750 kelvin. For this age and luminosity, "hot-start" formation models indicate a mass twice that of Jupiter. This planet also has a sufficiently low luminosity to be consistent with the "cold-start" core-accretion process that may have formed Jupiter.

575 citations

Book
01 May 2011
TL;DR: In this paper, the authors present an overview of the solar system and its evolution, including the formation and evolution of stars, asteroids, and free-floating planets, as well as their internal and external structures.
Abstract: 1. Introduction 2. Radial velocities 3. Astrometry 4. Timing 5. Microlensing 6. Transits 7. Imaging 8. Host stars 9. Brown dwarfs and free-floating planets 10. Formation and evolution 11. Interiors and atmospheres 12. The Solar System Appendixes References Index.

527 citations

Journal ArticleDOI
TL;DR: In this paper, a self-consistent, absolute isochronal age scale for young (< 200 Myr), nearby (< 100 pc) moving groups in the solar neighbourhood based on homogeneous fitting of semi-empirical pre-main-sequence model isochrones using the tau^2 maximum-likelihood fitting statistic of Naylor & Jeffries in the M_V, V-J colour-magnitude diagram is presented.
Abstract: We present a self-consistent, absolute isochronal age scale for young (< 200 Myr), nearby (< 100 pc) moving groups in the solar neighbourhood based on homogeneous fitting of semi-empirical pre-main-sequence model isochrones using the tau^2 maximum-likelihood fitting statistic of Naylor & Jeffries in the M_V, V-J colour-magnitude diagram. The final adopted ages for the groups are: 149+51-19 Myr for the AB Dor moving group, 24+/-3 Myr for the {\beta} Pic moving group (BPMG), 45+11-7 Myr for the Carina association, 42+6-4 Myr for the Columba association, 11+/-3 Myr for the {\eta} Cha cluster, 45+/-4 Myr for the Tucana-Horologium moving group (Tuc-Hor), 10+/-3 Myr for the TW Hya association, and 22+4-3 Myr for the 32 Ori group. At this stage we are uncomfortable assigning a final, unambiguous age to the Argus association as our membership list for the association appears to suffer from a high level of contamination, and therefore it remains unclear whether these stars represent a single population of coeval stars. Our isochronal ages for both the BPMG and Tuc-Hor are consistent with recent lithium depletion boundary (LDB) ages, which unlike isochronal ages, are relatively insensitive to the choice of low-mass evolutionary models. This consistency between the isochronal and LDB ages instills confidence that our self-consistent, absolute age scale for young, nearby moving groups is robust, and hence we suggest that these ages be adopted for future studies of these groups. Software implementing the methods described in this study is available from http: //www.astro.ex.ac.uk/people/timn/tau-squared/.

519 citations

Journal ArticleDOI
TL;DR: In this paper, a review of recent progress in high-contrast imaging with particular emphasis on observational results, discoveries near and below the deuterium-burning limit, and a practical overview of large-scale surveys and dedicated instruments is presented.
Abstract: High-contrast adaptive optics imaging is a powerful technique to probe the architectures of planetary systems from the outside-in and survey the atmospheres of self-luminous giant planets. Direct imaging has rapidly matured over the past decade and especially the last few years with the advent of high-order adaptive optics systems, dedicated planet-finding instruments with specialized coronagraphs, and innovative observing and post-processing strategies to suppress speckle noise. This review summarizes recent progress in high-contrast imaging with particular emphasis on observational results, discoveries near and below the deuterium-burning limit, and a practical overview of large-scale surveys and dedicated instruments. I conclude with a statistical meta-analysis of deep imaging surveys in the literature. Based on observations of 384 unique and single young ($\approx$5--300~Myr) stars spanning stellar masses between 0.1--3.0~\Msun, the overall occurrence rate of 5--13~\Mjup \ companions at orbital distances of 30--300~AU is 0.6$^{+0.7}_{-0.5}$\% assuming hot-start evolutionary models. The most massive giant planets regularly accessible to direct imaging are about as rare as hot Jupiters are around Sun-like stars. Dividing this sample into individual stellar mass bins does not reveal any statistically-significant trend in planet frequency with host mass: giant planets are found around 2.8$^{+3.7}_{-2.3}$\% of BA stars, $<$4.1\% of FGK stars, and $<$3.9\% of M dwarfs. Looking forward, extreme adaptive optics systems and the next generation of ground- and space-based telescopes with smaller inner working angles and deeper detection limits will increase the pace of discovery to ultimately map the demographics, composition, evolution, and origin of planets spanning a broad range of masses and ages.

397 citations