scispace - formally typeset
Search or ask a question
Author

Jennifer Jockel

Bio: Jennifer Jockel is an academic researcher from Washington University in St. Louis. The author has contributed to research in topics: Apoptosis & Bcl-xL. The author has an hindex of 8, co-authored 8 publications receiving 7665 citations.

Papers
More filters
Journal ArticleDOI
15 Nov 1996-Cell
TL;DR: The rapid phosphorylation of BAD following IL-3 connects a proximal survival signal with the BCL-2 family, modulating this checkpoint for apoptosis and enhanced BAD's death-promoting activity.

2,731 citations

Journal ArticleDOI
27 Jan 1995-Cell
TL;DR: A novel interacting protein, Bad, whose homology to Bcl-2 is limited to the BH1 and BH2 domains is identified, whose role in the mammalian cell death pathway is determined by these competing dimerizations in which levels of Bad influence the effectiveness of BCl-2 versus B cl-xL in repressing death.

2,159 citations

Journal ArticleDOI
TL;DR: It is demonstrated that a physiologic death stimulus, the withdrawal of interleukin‐3 (IL‐3), resulted in the translocation of monomeric BAX from the cytosol to the mitochondria where it could be cross‐linked as a BAX homodimer and enforced dimerization of BAX overrode the protection by BCL‐XL and IL‐3 to kill cells.
Abstract: Expression of the pro-apoptotic molecule BAX has been shown to induce cell death. While BAX forms both homo- and heterodimers, questions remain concerning its native conformation in vivo and which moiety is functionally active. Here we demonstrate that a physiologic death stimulus, the withdrawal of interleukin-3 (IL-3), resulted in the translocation of monomeric BAX from the cytosol to the mitochondria where it could be cross-linked as a BAX homodimer. In contrast, cells protected by BCL-2 demonstrated a block in this process in that BAX did not redistribute or homodimerize in response to a death signal. To test the functional consequence of BAX dimerization, we expressed a chimeric FKBP-BAX molecule. Enforced dimerization of FKBP-BAX by the bivalent ligand FK1012 resulted in its translocation to mitochondria and induced apoptosis. Caspases were activated yet caspase inhibitors did not block death; cytochrome c was not released detectably despite the induction of mitochondrial dysfunction. Moreover, enforced dimerization of BAX overrode the protection by BCL-XL and IL-3 to kill cells. These data support a model in which a death signal results in the activation of BAX. This conformational change in BAX manifests in its translocation, mitochondrial membrane insertion and homodimerization, and a program of mitochondrial dysfunction that results in cell death.

1,140 citations

Journal ArticleDOI
TL;DR: While BID appears to be required for the release of cytochrome c in the TNF death pathway, the release is likely not required for cell death, as other aspects of mitochondrial dysfunction still transpired and cells died nonetheless.

1,069 citations

Journal ArticleDOI
TL;DR: It is reported here that deletion mapping and site-directed mutagenesis identified a BH3 domain within BAD that proved necessary for both its heterodimerization with BCL-XL and its death agonist activity.

334 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The goal of this review is to provide a general overview of current knowledge on the process of apoptosis including morphology, biochemistry, the role of apoptoses in health and disease, detection methods, as well as a discussion of potential alternative forms of apoptotic proteins.
Abstract: The process of programmed cell death, or apoptosis, is generally characterized by distinct morphological characteristics and energy-dependent biochemical mechanisms. Apoptosis is considered a vital component of various processes including normal cell turnover, proper development and functioning of the immune system, hormone-dependent atrophy, embryonic development and chemical-induced cell death. Inappropriate apoptosis (either too little or too much) is a factor in many human conditions including neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer. The ability to modulate the life or death of a cell is recognized for its immense therapeutic potential. Therefore, research continues to focus on the elucidation and analysis of the cell cycle machinery and signaling pathways that control cell cycle arrest and apoptosis. To that end, the field of apoptosis research has been moving forward at an alarmingly rapid rate. Although many of the key apoptotic proteins have been identified, the molecular mechanisms of action or inaction of these proteins remain to be elucidated. The goal of this review is to provide a general overview of current knowledge on the process of apoptosis including morphology, biochemistry, the role of apoptosis in health and disease, detection methods, as well as a discussion of potential alternative forms of apoptosis.

10,744 citations

Journal ArticleDOI
12 Oct 2000-Nature
TL;DR: The basic components of the death machinery are reviewed, how they interact to regulate apoptosis in a coordinated manner is described, and the main pathways that are used to activate cell death are discussed.
Abstract: Apoptosis - the regulated destruction of a cell - is a complicated process. The decision to die cannot be taken lightly, and the activity of many genes influence a cell's likelihood of activating its self-destruction programme. Once the decision is taken, proper execution of the apoptotic programme requires the coordinated activation and execution of multiple subprogrammes. Here I review the basic components of the death machinery, describe how they interact to regulate apoptosis in a coordinated manner, and discuss the main pathways that are used to activate cell death.

7,255 citations

Journal ArticleDOI
17 Oct 1997-Cell
TL;DR: It is shown that growth factor activation of the PI3'K/Akt signaling pathway culminates in the phosphorylation of the BCL-2 family member BAD, thereby suppressing apoptosis and promoting cell survival.

5,831 citations

Journal ArticleDOI
28 Aug 1998-Science
TL;DR: Bcl-2 and related cytoplasmic proteins are key regulators of apoptosis, the cell suicide program critical for development, tissue homeostasis, and protection against pathogens.
Abstract: Bcl-2 and related cytoplasmic proteins are key regulators of apoptosis, the cell suicide program critical for development, tissue homeostasis, and protection against pathogens. Those most similar to Bcl-2 promote cell survival by inhibiting adapters needed for activation of the proteases (caspases) that dismantle the cell. More distant relatives instead promote apoptosis, apparently through mechanisms that include displacing the adapters from the pro-survival proteins. Thus, for many but not all apoptotic signals, the balance between these competing activities determines cell fate. Bcl-2 family members are essential for maintenance of major organ systems, and mutations affecting them are implicated in cancer.

5,380 citations

Journal ArticleDOI
07 Feb 1997-Cell
TL;DR: This work was supported in part by Grants-in-Aid from the Ministry of Education, Science, and Culture of Japan and by a Research Grant from the Princess Takamatsu Cancer Research Fund, and performed in part through Special Coordination Funds of the Science and Technology Agency of the Japanese Government.

5,054 citations