scispace - formally typeset
Search or ask a question
Author

Jennifer L. Martindale

Bio: Jennifer L. Martindale is an academic researcher from National Institutes of Health. The author has contributed to research in topics: RNA-binding protein & Gene silencing. The author has an hindex of 55, co-authored 107 publications receiving 15407 citations. Previous affiliations of Jennifer L. Martindale include Laboratory of Molecular Biology & Ohio State University.


Papers
More filters
Journal ArticleDOI
TL;DR: The various signaling pathways known to be activated in response to oxidative stress in mammalian cells, the mechanisms leading to their activation, and their roles in influencing cell survival are discussed.
Abstract: Reactive oxygen species (ROS), whether produced endogenously as a consequence of normal cell functions or derived from external sources, pose a constant threat to cells living in an aerobic environment as they can result in severe damage to DNA, protein, and lipids. The importance of oxidative damage to the pathogenesis of many diseases as well as to degenerative processes of aging has becoming increasingly apparent over the past few years. Cells contain a number of antioxidant defenses to minimize fluctuations in ROS, but ROS generation often exceeds the cell's antioxidant capacity, resulting in a condition termed oxidative stress. Host survival depends upon the ability of cells and tissues to adapt to or resist the stress, and repair or remove damaged molecules or cells. Numerous stress response mechanisms have evolved for these purposes, and they are rapidly activated in response to oxidative insults. Some of the pathways are preferentially linked to enhanced survival, while others are more frequently associated with cell death. Still others have been implicated in both extremes depending on the particular circumstances. In this review, we discuss the various signaling pathways known to be activated in response to oxidative stress in mammalian cells, the mechanisms leading to their activation, and their roles in influencing cell survival. These pathways constitute important avenues for therapeutic interventions aimed at limiting oxidative damage or attenuating its sequelae.

2,222 citations

Journal ArticleDOI
TL;DR: Gadd153 sensitizes cells to ER stress through mechanisms that involve down-regulation of Bcl2 and enhanced oxidant injury and protected cells from ER stress-induced cell death.
Abstract: gadd153, also known as chop, is a highly stress-inducible gene that is robustly expressed following disruption of homeostasis in the endoplasmic reticulum (ER) (so-called ER stress). Although all reported types of ER stress induce expression of Gadd153, its role in the stress response has remained largely undefined. Several studies have correlated Gadd153 expression with cell death, but a mechanistic link between Gadd153 and apoptosis has never been demonstrated. To address this issue we employed a cell model system in which Gadd153 is constitutively overexpressed, as well as two cell lines in which Gadd153 expression is conditional. In all cell lines, overexpression of Gadd153 sensitized cells to ER stress. Investigation of the mechanisms contributing to this effect revealed that elevated Gadd153 expression results in the down-regulation of Bcl2 expression, depletion of cellular glutathione, and exaggerated production of reactive oxygen species. Restoration of Bcl2 expression in Gadd153-overexpressing cells led to replenishment of glutathione and a reduction in levels of reactive oxygen species, and it protected cells from ER stress-induced cell death. We conclude that Gadd153 sensitizes cells to ER stress through mechanisms that involve down-regulation of Bcl2 and enhanced oxidant injury.

1,841 citations

Journal ArticleDOI
TL;DR: It is proposed that HuR controls translation of a subset of target mRNAs by influencing lincRNA-p21 levels, which in turn derepressed JunB and β-catenin translation and increased the levels of these proteins.

856 citations

Journal ArticleDOI
TL;DR: The results suggest that ERK and JNK/SAPK act in opposition to influence cell survival in response to oxidative stress, whereas neither p38 nor NF-kappaB affects the outcome.
Abstract: The mammalian response to stress is complex, often involving multiple signalling pathways that act in concert to influence cell fate. To examine potential interactions between the signalling cascades, we have focused on the effects of a model oxidant stress in a single cell type through an examination of the relative influences of mitogen-activated protein kinases (MAPKs) as well as two proposed apoptosis regulators, nuclear factor kappaB (NF-kappaB) and Bcl-2, in determining cell survival. Treatment of HeLa cells with H2O2 resulted in a time- and dose-dependent induction of apoptosis accompanied by sustained activation of all three MAPK subfamilies: extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) and p38. This H2O2-induced apoptosis was markedly enhanced when ERK2 activation was selectively inhibited by PD098059. Apoptosis decreased when JNK/SAPK activation was inhibited by expression of a dominant negative mutant form of SAPK/ERK kinase 1. Inhibition of the p38 kinase activity with p38-specific inhibitors SB202190 and SB203580 had no effect on cell survival. Because NF-kappaB activation by H2O2 is potentially related to both the ERK and JNK/SAPK signalling pathways, we examined the effects of inhibiting the activation of NF-kappaB; this interference had no effect on the cellular response to H2O2. Overexpression of the anti-apoptotic protein Bcl-2 significantly decreased the apoptosis seen after treatment with H2O2 without altering ERK or JNK/SAPK activities. Our results suggest that ERK and JNK/SAPK act in opposition to influence cell survival in response to oxidative stress, whereas neither p38 nor NF-kappaB affects the outcome. Bcl-2 acts independently and downstream of ERK and JNK/SAPK to enhance the survival of H2O2-treated cells.

751 citations

Journal ArticleDOI
TL;DR: It is suggested that ERK activation plays an active role in mediating cisplatin-induced apoptosis of HeLa cells and functions upstream of caspase activation to initiate the apoptotic signal.

658 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Together, at least three mechanistically distinct arms of the UPR regulate the expression of numerous genes that function within the secretory pathway but also affect broad aspects of cell fate and the metabolism of proteins, amino acids and lipids.
Abstract: The endoplasmic reticulum (ER) responds to the accumulation of unfolded proteins in its lumen (ER stress) by activating intracellular signal transduction pathways - cumulatively called the unfolded protein response (UPR). Together, at least three mechanistically distinct arms of the UPR regulate the expression of numerous genes that function within the secretory pathway but also affect broad aspects of cell fate and the metabolism of proteins, amino acids and lipids. The arms of the UPR are integrated to provide a response that remodels the secretory apparatus and aligns cellular physiology to the demands imposed by ER stress.

5,701 citations

Journal ArticleDOI
TL;DR: Current evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion, which is presented in detail in this review.
Abstract: The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review.

5,514 citations

Journal ArticleDOI
TL;DR: This work has shown that the regulation of miRNA metabolism and function by a range of mechanisms involving numerous protein–protein and protein–RNA interactions has an important role in the context-specific functions of miRNAs.
Abstract: MicroRNAs (miRNAs) are a large family of post-transcriptional regulators of gene expression that are ~21 nucleotides in length and control many developmental and cellular processes in eukaryotic organisms. Research during the past decade has identified major factors participating in miRNA biogenesis and has established basic principles of miRNA function. More recently, it has become apparent that miRNA regulators themselves are subject to sophisticated control. Many reports over the past few years have reported the regulation of miRNA metabolism and function by a range of mechanisms involving numerous protein-protein and protein-RNA interactions. Such regulation has an important role in the context-specific functions of miRNAs.

4,123 citations

Journal ArticleDOI
TL;DR: This comprehensive review highlights the physicochemical properties of cisplatin and related platinum-based drugs, and discusses its uses (either alone or in combination with other drugs) for the treatment of various human cancers.

3,467 citations