scispace - formally typeset
Search or ask a question
Author

Jennifer M. Quinde-Zlibut

Bio: Jennifer M. Quinde-Zlibut is an academic researcher from Vanderbilt University. The author has contributed to research in topics: Autism & Facial expression. The author has an hindex of 2, co-authored 3 publications receiving 12 citations. Previous affiliations of Jennifer M. Quinde-Zlibut include Center for Autism and Related Disorders.

Papers
More filters
Journal ArticleDOI
TL;DR: It is suggested that spatially static visual-tactile facilitation is intact in adults with ASD and SZ, and body boundary perception is related to social-emotional function, but not in a way that maps on to clinical status.
Abstract: Background: Individuals with autism spectrum disorder (ASD) and schizophrenia (SZ) exhibit multisensory processing difficulties and social impairments, with growing evidence that the former contributes to the latter. However, this work has largely reported on separate cohorts, introducing method variance as a barrier to drawing broad conclusions across studies. Further, very few studies have addressed touch, resulting in sparse knowledge about how these two clinical groups may integrate somatic information with other senses. Methods: In this study, we compared adults with ASD (n = 29), SZ (n = 24), and typical developmental histories (TD, n = 37) on two tasks requiring visual-tactile spatial multisensory processing. In the first task (crossmodal congruency), participants judged the location of a tactile stimulus in the presence or absence of simultaneous visual input that was either spatially congruent or incongruent, with poorer performance for incongruence an index of spatial multisensory interaction. In the second task, participants reacted to touch in the presence or absence of dynamic visual stimuli that appeared to approach or recede from the body. Within a certain radius around the body, defined as peripersonal space (PPS), an approaching visual or auditory stimulus reliably speeds reaction times (RT) to touch; outside of this radius, in extrapersonal space (EPS), there is no multisensory effect. PPS can be defined both by its size (radius) and slope (sharpness of the PPS-EPS boundary). Clinical measures were administered to explore relations with visual-tactile processing. Results: Neither clinical group differed from controls on the crossmodal congruency task. The ASD group had significantly smaller and more sharply-defined PPSs compared to the other two groups. Small PPS size was related to social symptom severity across groups, but was largely driven by the TD group, without significant effects in either clinical group. Conclusions: These results suggest that: (1) spatially static visual-tactile facilitation is intact in adults with ASD and SZ, (2) spatially dynamic visual-tactile facilitation impacting perception of the body boundary is affected in ASD but not SZ, and (3) body boundary perception is related to social-emotional function, but not in a way that maps on to clinical status.

15 citations

Journal ArticleDOI
TL;DR: There is a difference in response bias such that children with ASD are more conservative/likely to report “no” if unsure, than their young NT peers, and future work should consider the implications of conservative response criterion in ASD for commonly used forced-choice psychophysical paradigms.
Abstract: Individuals with autism spectrum disorder (ASD) are often behaviorally hyper-reactive to light touch, but it is unclear to what degree this arises from a fundamental sensory difference vs. higher order systems for attention or emotion processing. Thus far, experimental findings for light touch detection are mixed, and few previous studies have independently considered sensitivity (the ability to discriminate signal from noise) and decision criterion (the overall response bias or tendency to answer "yes" or "no" in a detection task). We tested a large sample of children, adolescents, and adults with ASD (n = 88) and with neurotypical (NT) development (n = 59) using von Frey filaments to derive light touch thresholds at the palm. We calculated signal detection metrics for sensitivity (Az) and response criterion (c) from hit and false alarm rates. Both metrics exhibited significant group differences, such that the ASD group was less sensitive, but had a much more conservative response criterion. We used a best subset model selection procedure in three separate ordinal regressions for the whole group, adults, and children/adolescents. In all selected models, c was by far the most significant predictor of threshold, supplanting effects of diagnostic group that were significant in the baseline models. In contrast, Az was not a significant predictor of threshold in any of the models. Mean values of c were similar for adults with and without autism and for children/adolescents with ASD, but lower (more liberal) in neurotypical children/adolescents. This suggests that children with ASD exhibit a conservatism in their perceptual decision-making that differs from their NT peers but resembles that of adults. Across the sample, the value of c was significantly and positively correlated with age and with autism symptoms (SRS-2 total score), in addition to thresholds. The results of this study suggest that, rather than a sensory difference in detection of light touch, there is a difference in response bias such that children with ASD are more conservative/likely to report "no" if unsure, than their young NT peers. Future work should consider the implications of conservative response criterion in ASD for commonly used forced-choice psychophysical paradigms.

9 citations

Journal ArticleDOI
TL;DR: The authors used the Multifaceted Empathy Test for juveniles (MET-J) to interrogate emotional and cognitive empathy in 184 participants (ages 8-59 years, 83 autistic) under the robust Bayesian inference framework.
Abstract: Although empathy impairments have been reported in autistic individuals, there is no clear consensus on how emotional valence influences this multidimensional process. In this study, we use the Multifaceted Empathy Test for juveniles (MET-J) to interrogate emotional and cognitive empathy in 184 participants (ages 8–59 years, 83 autistic) under the robust Bayesian inference framework. Group comparisons demonstrate previously unreported interaction effects between: (1) valence and autism diagnosis in predictions of emotional resonance, and (2) valence and age group in predictions of arousal to images portraying positive and negative facial expressions. These results extend previous studies using the MET by examining differential effects of emotional valence in a large sample of autistic children and adults with average or above-average intelligence. We report impaired cognitive empathy in autism, and subtle differences in emotional empathy characterized by less distinction between emotional resonance to positive vs. negative facial expressions in autism compared to neurotypicals. Reduced emotional differentiation between positive and negative affect in others could be a mechanism for diminished social reciprocity that poses a universal challenge for people with autism. These component- and valence- specific findings are of clinical relevance for the development and implementation of target-specific social interventions in autism.

6 citations

Journal ArticleDOI
TL;DR: This paper used automated facial coding and an unsupervised clustering approach to limit inter-individual variability in facial expression production that may have otherwise obscured group differences in previous studies, allowing an "apples-to-apples" comparison between autistic and neurotypical adults.
Abstract: It is unclear whether atypical patterns of facial expression production metrics in autism reflect the dynamic and nuanced nature of facial expressions across people or a true diagnostic difference. Furthermore, the heterogeneity observed across autism symptomatology suggests a need for more adaptive and personalized social skills programs. Towards this goal, it would be useful to have a more concrete and empirical understanding of the different expressiveness profiles within the autistic population and how they differ from neurotypicals.We used automated facial coding and an unsupervised clustering approach to limit inter-individual variability in facial expression production that may have otherwise obscured group differences in previous studies, allowing an "apples-to-apples" comparison between autistic and neurotypical adults. Specifically, we applied k-means clustering to identify subtypes of facial expressiveness in an autism group (N = 27) and a neurotypical control group (N = 57) separately. The two most stable clusters from these analyses were then further characterized and compared based on their expressiveness and emotive congruence to emotionally charged stimuli.Our main finding was that a subset of autistic adults in our sample show heightened spontaneous facial expressions irrespective of image valence. We did not find evidence for greater incongruous (i.e., inappropriate) facial expressions in autism. Finally, we found a negative trend between expressiveness and emotion recognition within the autism group.The results from our previous study on self-reported empathy and current expressivity findings point to a higher degree of facial expressions recruited for emotional resonance in autism that may not always be adaptive (e.g., experiencing similar emotional resonance regardless of valence). These findings also build on previous work indicating that facial expression intensity is not diminished in autism and suggest the need for intervention programs to focus on emotion recognition and social skills in the context of both negative and positive emotions.

1 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Higher levels of Glx were associated with more parent reported difficulties of hyper- and hypo-reactivity to sensory input, as well as reduced feed-forward inhibition during tactile perception in children with ASD, providing strong empirical support for increased excitation by way of elevated Glx in ASD.
Abstract: Individuals on the autism spectrum are often reported as being hyper- and/or hyporeactive to sensory input. These sensory symptoms were one of the key observations that led to the development of the altered excitation-inhibition (E-I) model of autism, which posits that an increase ratio of excitatory to inhibitory signaling may explain certain phenotypical expressions of autism spectrum disorders (ASD). While there has been strong support for the altered E-I model of autism, much of the evidence has come from animal models. With regard to in-vivo human studies, evidence for altered E-I balance in ASD come from studies adopting magnetic resonance spectroscopy (MRS). Spectral-edited MRS can be used to provide measures of the levels of GABA + (GABA + macromolecules) and Glx (glutamate + glutamine) in specific brain regions as proxy markers of inhibition and excitation respectively. In the current study, we found region-specific elevations of Glx in the primary sensorimotor cortex (SM1) in ASD. There were no group differences of GABA+ in either the SM1 or thalamus. Higher levels of Glx were associated with more parent reported difficulties of sensory hyper- and hyporeactivity, as well as reduced feed-forward inhibition during tactile perception in children with ASD. Critically, the finding of elevated Glx provides strong empirical support for increased excitation in ASD. Our results also provide a clear link between Glx and the sensory symptoms of ASD at both behavioral and perceptual levels.

20 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured the spatial parameters of the hypothesized self-other boundary in SZ using an immersive virtual reality visuotactile reaction time (RT) paradigm, where participants with SZ and 24 demographically matched controls were asked to detect tactile vibration while watching a ball approaching them, thrown by either a machine or an avatar.
Abstract: Self-disturbances such as an anomalous perception of one's own body boundary are central to the phenomenology of schizophrenia (SZ), but measuring the spatial parameters of the hypothesized self-other boundary has proved to be challenging. Peripersonal space (PPS) refers to the immediate zone surrounding the body where the self interacts physically with the environment; the space that corresponds to hypothesized self-other boundary. PPS is represented by enhanced multisensory integration and faster reaction time (RT) for objects near the body. Thus, multisensory RT tasks can be used to estimate self-other boundary. We aimed to quantify PPS in SZ using an immersive virtual reality visuotactile RT paradigm. Twenty-four participants with SZ and 24 demographically matched controls (CO) were asked to detect tactile vibration while watching a ball approaching them, thrown by either a machine (nonsocial condition) or an avatar (social condition). Parameters of PPS were estimated from the midpoint of the spatial range where the tactile RT decreased most rapidly (size) and the gradient of the RT change at this midpoint (slope). Overall, PPS was smaller in participants with SZ compared with CO. PPS slope for participants with SZ was shallower than CO in the social but not in nonsocial condition, indicating an increased uncertainty of self-other boundary across an extended zone in SZ. Social condition also increased false alarms for tactile detection in SZ. Clinical symptoms were not clearly associated with PPS parameters. These findings suggest the context-dependent nature of weakened body boundary in SZ and underscore the importance of reconciliating objective and subjective aspects of self-disturbances.

15 citations

Journal ArticleDOI
28 May 2021-Cortex
TL;DR: The PeriPersonal Space (PPS) has been defined as the space surrounding the body, where physical interactions with elements of the environment take place as discussed by the authors, a concept stemming from social psychology, defining the space we keep between us and others to avoid discomfort.

14 citations

Journal ArticleDOI
TL;DR: In this article, the authors introduce an integrated perspective that ascribes the maladjustments of the predictive mechanism to dysregulation of neural synchronization and propose a neuro-computational model capable of linking predictive coding theories with electrophysiological findings, aiming to increase knowledge on the neuronal foundations of the two spectra features.

13 citations

Journal ArticleDOI
TL;DR: In this paper , the authors introduce an integrated perspective that ascribes the maladjustments of the predictive mechanism to dysregulation of neural synchronization, and propose a neuro-computational model capable of linking predictive coding theories with electrophysiological findings.

13 citations