scispace - formally typeset
Search or ask a question
Author

Jennifer T. Wyffels

Bio: Jennifer T. Wyffels is an academic researcher from University of Delaware. The author has contributed to research in topics: Sand tiger shark & Carcharias. The author has an hindex of 5, co-authored 8 publications receiving 99 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This study summarizes available data for chondrichthyes and describes resources for one of the largest projects to characterize one of these fish, Leucoraja erinacea, the little skate, serving as the skate genome project portal linking data, research tools, and teaching resources.
Abstract: Chondrichthyan fishes are a diverse class of gnathostomes that provide a valuable perspective on fundamental characteristics shared by all jawed and limbed vertebrates. Studies of phylogeny, species diversity, population structure, conservation, and physiology are accelerated by genomic, transcriptomic and protein sequence data. These data are widely available for many sarcopterygii (coelacanth, lungfish and tetrapods) and actinoptergii (ray-finned fish including teleosts) taxa, but limited for chondrichthyan fishes. In this study, we summarize available data for chondrichthyes and describe resources for one of the largest projects to characterize one of these fish, Leucoraja erinacea, the little skate. SkateBase ( http://skatebase.org) serves as the skate genome project portal linking data, research tools, and teaching resources.

65 citations

Journal ArticleDOI
TL;DR: Annual reproduction with spring seasonality for male sand tiger sharks is demonstrated through marked seasonal differences in testosterone and semen production, likely contributing to the species' limited reproductive success in aquariums.
Abstract: Understanding the fundamental reproductive biology of a species is the first step toward identifying parameters that are critical for reproduction and for the development of assisted reproductive techniques. Ejaculates were collected from aquarium (n = 24) and in situ (n = 34) sand tiger sharks Carcharias taurus. Volume, pH, osmolarity, sperm concentration, motility, status, morphology, and plasma membrane integrity were assessed for each ejaculate. Semen with the highest proportion of motile sperm was collected between April and June for both in situ and aquarium sand tiger sharks indicating a seasonal reproductive cycle. Overall, 17 of 30 semen samples collected from aquarium sharks from April through June contained motile sperm compared to 29 of 29 of in situ sharks, demonstrating semen quality differences between aquarium and in situ sharks. Sperm motility, status, morphology, and plasma membrane integrity were significantly higher (P < 0.05) for in situ compared to aquarium sand tiger sharks. Testosterone was measured by an enzyme immunoassay validated for the species. Testosterone concentration was seasonal for both aquarium and in situ sharks with highest concentrations measured in spring and lowest in summer. In situ sharks had higher (P < 0.05) testosterone concentration in spring than aquarium sharks. This study demonstrated annual reproduction with spring seasonality for male sand tiger sharks through marked seasonal differences in testosterone and semen production. Lower testosterone and poorer semen quality was observed in aquarium sharks likely contributing to the species' limited reproductive success in aquariums.

20 citations

Book ChapterDOI
TL;DR: Current reproductive technologies including computer assisted sperm assessments to study warming effects on sperm motility and intra-uterine satellite tags to determine birthing grounds will serve to generate data to mitigate anthropogenic changes that threaten the future of this vulnerable groups of fish.
Abstract: Sharks and rays make up 96% of the class Chondrichthyes. They are among the most endangered of any taxa, threatened through habitat loss, overfishing and hunting for shark fin soup, traditional medicines or sport, and because many species are slow to mature and produce low numbers of offspring. Sharks and rays are ecologically and reproductively diverse, though basic knowledge of their reproductive physiology is lacking for many species. There has been a move towards non-lethal approaches of data collection in sharks and rays, especially with reproductive technologies such as ultrasound and hormone analysis. Additionally, technologies such as semen collection and artificial insemination are lending themselves to develop tools to manage small or closed populations, with cold-stored sperm being shipped between institutions to maximize genetic diversity in managed populations. The role of steroid hormones in elasmobranch reproduction appears broadly conserved, though heavily influenced by environmental cues, especially temperature. For this reason elasmobranchs are likely at risk of reproductive perturbations due to environmental changes such as ocean warming. Current reproductive technologies including computer assisted sperm assessments to study warming effects on sperm motility and intra-uterine satellite tags to determine birthing grounds will serve to generate data to mitigate anthropogenic changes that threaten the future of this vulnerable groups of fish.

13 citations

Journal ArticleDOI
TL;DR: The results indicate that normal wound healing signals can impact the ability to identify biomarkers, and a multi-protein panel assay, including osteocalcin preproprotein, osteomodulin precursor, and collagen alpha-1(v) chain isoform 2 preprotein, may provide a solution for HO detection and monitoring.
Abstract: Heterotopic ossification (HO) is a significant problem for wounded warriors surviving high-energy blast injuries; however, currently, there is no biomarker panel capable of globally characterizing, diagnosing, and monitoring HO progression. The aim of this study was to identify biomarkers for HO using proteomic techniques and blood serum. Isobaric tags for relative and absolute quantitation (iTRAQ) was used to generate a semi-quantitative global proteomics survey of serum from patients with and without heterotopic ossification. Leveraging the iTRAQ data, a targeted selection reaction monitoring mass spectrometry (SRM-MS) assay was developed for 10 protein candidates: alkaline phosphatase, osteocalcin, alpha-2 type I collagen, collagen alpha-1(V) chain isoform 2 preprotein, bone sialoprotein 2, phosphatidate phosphatase LPIN2, osteomodulin, protein phosphatase 1J, and RRP12-like protein. The proteomic survey of serum from both healthy and disease patients includes 1220 proteins and was enriched for proteins involved in the response to elevated platelet Ca+2, wound healing, and extracellular matrix organization. Proteolytic peptides from three of the ten SRM-MS proteins, osteocalcin preprotein, osteomodulin precursor, and collagen alpha-1(v) chain isoform 2 preprotein from serum, are potential clinical biomarkers for HO. This study is the first reported SRM-MS analysis of serum from individuals with and without heterotopic ossification, and differences in the serum proteomic profile between healthy and diseased subjects were identified. Furthermore, our results indicate that normal wound healing signals can impact the ability to identify biomarkers, and a multi-protein panel assay, including osteocalcin preproprotein, osteomodulin precursor, and collagen alpha-1(v) chain isoform 2 preprotein, may provide a solution for HO detection and monitoring.

12 citations

Journal ArticleDOI
TL;DR: It is found that serum samples from subjects experiencing traumatic injuries with resulting HO have a different proteomic expression profile compared to those from the matched controls, and these proteins are key candidates for a serum diagnostic panel that may enable early detection of HO prior to radiographic and clinical manifestations.

8 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A thorough genome annotation revealed Hox C genes previously hypothesized to have been lost, as well as distinct gene repertories of opsins and olfactory receptors that would be associated with adaptation to unique underwater niches, and provided insights on the molecular basis of adaptation to underwater lifestyle and the evolutionary origins of vertebrates.
Abstract: Modern cartilaginous fishes are divided into elasmobranchs (sharks, rays and skates) and chimaeras, and the lack of established whole-genome sequences for the former has prevented our understanding of early vertebrate evolution and the unique phenotypes of elasmobranchs. Here we present de novo whole-genome assemblies of brownbanded bamboo shark and cloudy catshark and an improved assembly of the whale shark genome. These relatively large genomes (3.8–6.7 Gbp) contain sparse distributions of coding genes and regulatory elements and exhibit reduced molecular evolutionary rates. Our thorough genome annotation revealed Hox C genes previously hypothesized to have been lost, as well as distinct gene repertories of opsins and olfactory receptors that would be associated with adaptation to unique underwater niches. We also show the early establishment of the genetic machinery governing mammalian homoeostasis and reproduction at the jawed vertebrate ancestor. This study, supported by genomic, transcriptomic and epigenomic resources, provides a foundation for the comprehensive, molecular exploration of phenotypes unique to sharks and insights into the evolutionary origins of vertebrates. Genomic resources for cartilaginous fishes are scarce. Here, the authors sequence the genome of three sharks and provide insights on the molecular basis of adaptation to underwater lifestyle and the evolutionary origins of vertebrates.

157 citations

Journal ArticleDOI
TL;DR: It is suggested that at the dawn of the vertebrate lineage, teeth were most likely continuously regenerative structures, and a core set of genes from members of key developmental signalling pathways were instrumental in creating a dental legacy redeployed throughout vertebrate evolution.

87 citations

Journal ArticleDOI
TL;DR: Evidence is provided that the skeletal patterning of the catshark Scyliorhinus canicula pectoral fin is likely driven by a deeply conserved Bmp–Sox9–Wnt Turing network, and that the broad morphological diversity of the distal fin and limb elements arose from the spatial re-organization of a deeply conserve Turing mechanism.
Abstract: A Turing mechanism implemented by BMP, SOX9 and WNT has been proposed to control mouse digit patterning. However, its generality and contribution to the morphological diversity of fins and limbs has not been explored. Here we provide evidence that the skeletal patterning of the catshark Scyliorhinus canicula pectoral fin is likely driven by a deeply conserved Bmp-Sox9-Wnt Turing network. In catshark fins, the distal nodular elements arise from a periodic spot pattern of Sox9 expression, in contrast to the stripe pattern in mouse digit patterning. However, our computer model shows that the Bmp-Sox9-Wnt network with altered spatial modulation can explain the Sox9 expression in catshark fins. Finally, experimental perturbation of Bmp or Wnt signalling in catshark embryos produces skeletal alterations which match in silico predictions. Together, our results suggest that the broad morphological diversity of the distal fin and limb elements arose from the spatial re-organization of a deeply conserved Turing mechanism.

81 citations

Journal ArticleDOI
TL;DR: It is indicated that lungfish, not coelacanths, are the closest relatives to land-adapted vertebrates and transposable elements appear to be active and show high diversity, suggesting a role for them in the remarkable expansion of the lungfish genome.
Abstract: Lungfish and coelacanths are the only living sarcopterygian fish. The phylogenetic relationship of lungfish to the last common ancestor of tetrapods and their close morphological similarity to their fossil ancestors make this species uniquely interesting. However their genome size, the largest among vertebrates, is hampering the generation of a whole genome sequence. To provide a partial solution to the problem, a high-coverage lungfish reference transcriptome was generated and assembled. The present findings indicate that lungfish, not coelacanths, are the closest relatives to land-adapted vertebrates. Whereas protein-coding genes evolve at a very slow rate, possibly reflecting a “living fossil” status, transposable elements appear to be active and show high diversity, suggesting a role for them in the remarkable expansion of the lungfish genome. Analyses of single genes and gene families documented changes connected to the water to land transition and demonstrated the value of the lungfish reference transcriptome for comparative studies of vertebrate evolution.

75 citations