scispace - formally typeset
Search or ask a question
Author

Jenny Clark

Bio: Jenny Clark is an academic researcher from University of Sheffield. The author has contributed to research in topics: Singlet fission & Quantum dot. The author has an hindex of 31, co-authored 78 publications receiving 6349 citations. Previous affiliations of Jenny Clark include University of Cambridge & Polytechnic University of Milan.


Papers
More filters
Journal ArticleDOI
TL;DR: The role of excitonic coupling on the nature of photoexcitations in the conjugated polymer regioregular poly(3-hexylthiophene) is addressed by means of temperature-dependent absorption and photoluminescence spectroscopy.
Abstract: We address the role of excitonic coupling on the nature of photoexcitations in the conjugated polymer regioregular poly(3-hexylthiophene). By means of temperature-dependent absorption and photoluminescence spectroscopy, we show that optical emission is overwhelmingly dominated by weakly coupled H aggregates. The relative absorbance of the 0-0 and 0-1 vibronic peaks provides a powerfully simple means to extract the magnitude of the intermolecular coupling energy, of approximately 5 and 30 meV for films spun from isodurene and chloroform solutions, respectively.

848 citations

Journal ArticleDOI
31 Jan 2014-Science
TL;DR: The time dependence of the separation of photogenerated electron hole pairs across the donor-acceptor heterojunction in OPV model systems is reported, consistent with charge separation through access to delocalized π-electron states in ordered regions of the fullerene acceptor material.
Abstract: Understanding the charge-separation mechanism in organic photovoltaic cells (OPVs) could facilitate optimization of their overall efficiency. Here we report the time dependence of the separation of photogenerated electron hole pairs across the donor-acceptor heterojunction in OPV model systems. By tracking the modulation of the optical absorption due to the electric field generated between the charges, we measure ~200 millielectron volts of electrostatic energy arising from electron-hole separation within 40 femtoseconds of excitation, corresponding to a charge separation distance of at least 4 nanometers. At this separation, the residual Coulomb attraction between charges is at or below thermal energies, so that electron and hole separate freely. This early time behavior is consistent with charge separation through access to delocalized π-electron states in ordered regions of the fullerene acceptor material.

801 citations

Journal ArticleDOI
TL;DR: The increasing capability for manufacturing a wide variety of optoelectronic devices from polymer and polymer-silicon hybrids, including transmission fibre, modulators, detectors and light sources, suggests that organic photonics has a promising future in communications and other applications.
Abstract: The increasing capability for manufacturing a wide variety of optoelectronic devices from polymer and polymer–silicon hybrids, including transmission fibre, modulators, detectors and light sources, suggests that organic photonics has a promising future in communications and other applications.

683 citations

Journal ArticleDOI
TL;DR: In this article, the linear absorption spectrum of regioregular poly(3-hexylthiophene) films was analyzed to probe directly the film microstructure and how it depends on processing conditions.
Abstract: We analyze the linear absorption spectrum of regioregular poly(3-hexylthiophene) films spun from a variety of solvents to probe directly the film microstructure and how it depends on processing conditions. We estimate the exciton bandwidth and the percentage of the film composed of aggregates quantitatively using a weakly interacting H-aggregate model. This provides a description of the degree and quality of crystallites within the film and is in turn correlated with thin-film field-effect transistor characteristics.

510 citations

Journal ArticleDOI
24 Jan 2000
TL;DR: It is demonstrated that the excited state transitions arise from lateral quantization and that tuning through the inhomogeneous distribution of dot energies can be achieved by variation of electric field.
Abstract: New information on the electron-hole wave functions in InAs-GaAs self-assembled quantum dots is deduced from Stark effect spectroscopy. Most unexpectedly it is shown that the hole is localized towards the top of the dot, above the electron, an alignment that is inverted relative to the predictions of all recent calculations. We are able to obtain new information on the structure and composition of buried quantum dots from modeling of the data. We also demonstrate that the excited state transitions arise from lateral quantization and that tuning through the inhomogeneous distribution of dot energies can be achieved by variation of electric field.

443 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is revealed that solution-processed organic-inorganic halide perovskites (CH3NH3PbX3), which demonstrated huge potential in photovoltaics, also have promising optical gain and may show electrically driven lasing.
Abstract: Low-temperature solution-processed materials that show optical gain and can be embedded into a wide range of cavity resonators are attractive for the realization of on-chip coherent light sources. Organic semiconductors and colloidal quantum dots are considered the main candidates for this application. However, stumbling blocks in organic lasing include intrinsic losses from bimolecular annihilation and the conflicting requirements of high charge carrier mobility and large stimulated emission; whereas challenges pertaining to Auger losses and charge transport in quantum dots still remain. Herein, we reveal that solution-processed organic-inorganic halide perovskites (CH 3 NH 3 PbX 3 where X = Cl, Br, I), which demonstrated huge potential in photovoltaics, also have promising optical gain. Their ultra-stable amplified spontaneous emission at strikingly low thresholds stems from their large absorption coefficients, ultralow bulk defect densities and slow Auger recombination. Straightforward visible spectral tunability (390-790 nm) is demonstrated. Importantly, in view of their balanced ambipolar charge transport characteristics, these materials may show electrically driven lasing. © 2014 Macmillan Publishers Limited.

2,691 citations

Journal ArticleDOI
TL;DR: Non-fullerene OSCs show great tunability in absorption spectra and electron energy levels, providing a wide range of new opportunities, and this Review highlights these opportunities made possible by NF acceptors.
Abstract: Organic solar cells (OSCs) have been dominated by donor:acceptor blends based on fullerene acceptors for over two decades. This situation has changed recently, with non-fullerene (NF) OSCs developing very quickly. The power conversion efficiencies of NF OSCs have now reached a value of over 13%, which is higher than the best fullerene-based OSCs. NF acceptors show great tunability in absorption spectra and electron energy levels, providing a wide range of new opportunities. The coexistence of low voltage losses and high current generation indicates that new regimes of device physics and photophysics are reached in these systems. This Review highlights these opportunities made possible by NF acceptors, and also discuss the challenges facing the development of NF OSCs for practical applications.

2,117 citations

Journal ArticleDOI
TL;DR: It is shown that hole transfer from the MoS2 layer to the WS2 layer takes place within 50 fs after optical excitation, a remarkable rate for van der Waals coupled two-dimensional layers, which can enable novel two- dimensional devices for optoelectronics and light harvesting.
Abstract: The charge transfer between two layers of different two-dimensional materials occurs at a much faster speed than expected, holding promise for efficient optoelectronic devices. Van der Waals heterostructures have recently emerged as a new class of materials, where quantum coupling between stacked atomically thin two-dimensional layers, including graphene, hexagonal-boron nitride and transition-metal dichalcogenides (MX2), give rise to fascinating new phenomena1,2,3,4,5,6,7,8,9,10. MX2 heterostructures are particularly exciting for novel optoelectronic and photovoltaic applications, because two-dimensional MX2 monolayers can have an optical bandgap in the near-infrared to visible spectral range and exhibit extremely strong light–matter interactions2,3,11. Theory predicts that many stacked MX2 heterostructures form type II semiconductor heterojunctions that facilitate efficient electron–hole separation for light detection and harvesting12,13,14,15,16. Here, we report the first experimental observation of ultrafast charge transfer in photoexcited MoS2/WS2 heterostructures using both photoluminescence mapping and femtosecond pump–probe spectroscopy. We show that hole transfer from the MoS2 layer to the WS2 layer takes place within 50 fs after optical excitation, a remarkable rate for van der Waals coupled two-dimensional layers. Such ultrafast charge transfer in van der Waals heterostructures can enable novel two-dimensional devices for optoelectronics and light harvesting.

1,804 citations

Journal ArticleDOI
02 May 2012-ACS Nano
TL;DR: The latest progress in graphene photonics, plasmonics, and broadband optoelectronic devices is reviewed, with particular emphasis on the ability to integrate graphenePhotonics onto the silicon platform to afford broadband operation in light routing and amplification.
Abstract: Graphene has been hailed as a wonderful material in electronics, and recently, it is the rising star in photonics, as well. The wonderful optical properties of graphene afford multiple functions of signal emitting, transmitting, modulating, and detection to be realized in one material. In this paper, the latest progress in graphene photonics, plasmonics, and broadband optoelectronic devices is reviewed. Particular emphasis is placed on the ability to integrate graphene photonics onto the silicon platform to afford broadband operation in light routing and amplification, which involves components like polarizer, modulator, and photodetector. Other functions like saturable absorber and optical limiter are also reviewed.

1,778 citations

Journal ArticleDOI
TL;DR: In this article, a unified model of how charge carriers travel in conjugated polymer films is proposed, and it is shown that in high-molecular-weight polymers, efficient charge transport is allowed due to a network of interconnected aggregates that are characterized by short-range order.
Abstract: Conjugated polymer chains have many degrees of conformational freedom and interact weakly with each other, resulting in complex microstructures in the solid state. Understanding charge transport in such systems, which have amorphous and ordered phases exhibiting varying degrees of order, has proved difficult owing to the contribution of electronic processes at various length scales. The growing technological appeal of these semiconductors makes such fundamental knowledge extremely important for materials and process design. We propose a unified model of how charge carriers travel in conjugated polymer films. We show that in high-molecular-weight semiconducting polymers the limiting charge transport step is trapping caused by lattice disorder, and that short-range intermolecular aggregation is sufficient for efficient long-range charge transport. This generalization explains the seemingly contradicting high performance of recently reported, poorly ordered polymers and suggests molecular design strategies to further improve the performance of future generations of organic electronic materials. The recent demonstration that highly disordered polymer films can transport charges as effectively as polycrystalline semiconductors has called into question the relationship between structural order and mobility in organic materials. It is now shown that, in high-molecular-weight polymers, efficient charge transport is allowed due to a network of interconnected aggregates that are characterized by short-range order.

1,662 citations