scispace - formally typeset
Search or ask a question
Author

Jenq-Neng Hwang

Bio: Jenq-Neng Hwang is an academic researcher from University of Washington. The author has contributed to research in topics: Video tracking & Artificial neural network. The author has an hindex of 45, co-authored 442 publications receiving 8741 citations. Previous affiliations of Jenq-Neng Hwang include Shanghai University & Princeton University.


Papers
More filters
Journal ArticleDOI
TL;DR: This survey, which aims to provide a comprehensive state-of-the-art review of the field, also addresses several challenges associated with these systems and applications.
Abstract: This review article surveys extensively the current progresses made toward video-based human activity recognition Three aspects for human activity recognition are addressed including core technology, human activity recognition systems, and applications from low-level to high-level representation In the core technology, three critical processing stages are thoroughly discussed mainly: human object segmentation, feature extraction and representation, activity detection and classification algorithms In the human activity recognition systems, three main types are mentioned, including single person activity recognition, multiple people interaction and crowd behavior, and abnormal activity recognition Finally the domains of applications are discussed in detail, specifically, on surveillance environments, entertainment environments and healthcare systems Our survey, which aims to provide a comprehensive state-of-the-art review of the field, also addresses several challenges associated with these systems and applications Moreover, in this survey, various applications are discussed in great detail, specifically, a survey on the applications in healthcare monitoring systems

371 citations

Journal ArticleDOI
TL;DR: The Handbook of Neural Network Signal Processing brings together applications that were previously scattered among various publications to provide an up-to-date, detailed treatment of the subject from an engineering point of view.
Abstract: From the Publisher: The use of neural networks is permeating every area of signal processing. They can provide powerful means for solving many problems, especially in nonlinear, real-time, adaptive, and blind signal processing. The Handbook of Neural Network Signal Processing brings together applications that were previously scattered among various publications to provide an up-to-date, detailed treatment of the subject from an engineering point of view.The authors cover basic principles, modeling, algorithms, architectures, implementation procedures, and well-designed simulation examples of audio, video, speech, communication, geophysical, sonar, radar, medical, and many other signals. The subject of neural networks and their application to signal processing is constantly improving. You need a handy reference that will inform you of current applications in this new area. The Handbook of Neural Network Signal Processing provides this much needed service for all engineers and scientists in the field.

361 citations

Journal ArticleDOI
TL;DR: A novel algorithm for segmentation of moving objects in video sequences and extraction of video object planes (VOPs) based on connected components analysis and smoothness of VO displacement in successive frames is proposed.
Abstract: The new video-coding standard MPEG-4 enables content-based functionality, as well as high coding efficiency, by taking into account shape information of moving objects. A novel algorithm for segmentation of moving objects in video sequences and extraction of video object planes (VOPs) is proposed . For the case of multiple video objects in a scene, the extraction of a specific single video object (VO) based on connected components analysis and smoothness of VO displacement in successive frames is also discussed. Our algorithm begins with a robust double-edge map derived from the difference between two successive frames. After removing edge points which belong to the previous frame, the remaining edge map, moving edge (ME), is used to extract the VOP. The proposed algorithm is evaluated on an indoor sequence captured by a low-end camera as well as MPEG-4 test sequences and produces promising results.

333 citations

Journal ArticleDOI
TL;DR: The paper algorithmically and empirically studies two major types of nonparametric multivariate density estimation techniques, where no assumption is made about the data being drawn from any of known parametric families of distribution.
Abstract: The paper algorithmically and empirically studies two major types of nonparametric multivariate density estimation techniques, where no assumption is made about the data being drawn from any of known parametric families of distribution. The first type is the popular kernel method (and several of its variants) which uses locally tuned radial basis (e.g., Gaussian) functions to interpolate the multidimensional density; the second type is based on an exploratory projection pursuit technique which interprets the multidimensional density through the construction of several 1D densities along highly "interesting" projections of multidimensional data. Performance evaluations using training data from mixture Gaussian and mixture Cauchy densities are presented. The results show that the curse of dimensionality and the sensitivity of control parameters have a much more adverse impact on the kernel density estimators than on the projection pursuit density estimators. >

290 citations

Journal ArticleDOI
TL;DR: A theoretical analysis of error due to finite precision computation was undertaken to determine the necessary precision for successful forward retrieving and back-propagation learning in a multilayer perceptron.
Abstract: Through parallel processing, low precision fixed point hardware can be used to build a very high speed neural network computing engine where the low precision results in a drastic reduction in system cost. The reduced silicon area required to implement a single processing unit is taken advantage of by implementing multiple processing units on a single piece of silicon and operating them in parallel. The important question which arises is how much precision is required to implement neural network algorithms on this low precision hardware. A theoretical analysis of error due to finite precision computation was undertaken to determine the necessary precision for successful forward retrieving and back-propagation learning in a multilayer perceptron. This analysis can easily be further extended to provide a general finite precision analysis technique by which most neural network algorithms under any set of hardware constraints may be evaluated. >

245 citations


Cited by
More filters
Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Journal ArticleDOI
TL;DR: It is proved the convergence of a recursive mean shift procedure to the nearest stationary point of the underlying density function and, thus, its utility in detecting the modes of the density.
Abstract: A general non-parametric technique is proposed for the analysis of a complex multimodal feature space and to delineate arbitrarily shaped clusters in it. The basic computational module of the technique is an old pattern recognition procedure: the mean shift. For discrete data, we prove the convergence of a recursive mean shift procedure to the nearest stationary point of the underlying density function and, thus, its utility in detecting the modes of the density. The relation of the mean shift procedure to the Nadaraya-Watson estimator from kernel regression and the robust M-estimators; of location is also established. Algorithms for two low-level vision tasks discontinuity-preserving smoothing and image segmentation - are described as applications. In these algorithms, the only user-set parameter is the resolution of the analysis, and either gray-level or color images are accepted as input. Extensive experimental results illustrate their excellent performance.

11,727 citations

Journal ArticleDOI
TL;DR: Clustering algorithms for data sets appearing in statistics, computer science, and machine learning are surveyed, and their applications in some benchmark data sets, the traveling salesman problem, and bioinformatics, a new field attracting intensive efforts are illustrated.
Abstract: Data analysis plays an indispensable role for understanding various phenomena. Cluster analysis, primitive exploration with little or no prior knowledge, consists of research developed across a wide variety of communities. The diversity, on one hand, equips us with many tools. On the other hand, the profusion of options causes confusion. We survey clustering algorithms for data sets appearing in statistics, computer science, and machine learning, and illustrate their applications in some benchmark data sets, the traveling salesman problem, and bioinformatics, a new field attracting intensive efforts. Several tightly related topics, proximity measure, and cluster validation, are also discussed.

5,744 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a state-of-the-art survey of ANN applications in forecasting and provide a synthesis of published research in this area, insights on ANN modeling issues, and future research directions.

3,680 citations