scispace - formally typeset
Search or ask a question
Author

Jens H. Schmid

Other affiliations: University of British Columbia
Bio: Jens H. Schmid is an academic researcher from National Research Council. The author has contributed to research in topics: Photonics & Metamaterial. The author has an hindex of 24, co-authored 69 publications receiving 4796 citations. Previous affiliations of Jens H. Schmid include University of British Columbia.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors provide an overview and outlook for the silicon waveguide platform, optical sources, optical modulators, photodetectors, integration approaches, packaging, applications of silicon photonics and approaches required to satisfy applications at mid-infrared wavelengths.
Abstract: Silicon photonics research can be dated back to the 1980s. However, the previous decade has witnessed an explosive growth in the field. Silicon photonics is a disruptive technology that is poised to revolutionize a number of application areas, for example, data centers, high-performance computing and sensing. The key driving force behind silicon photonics is the ability to use CMOS-like fabrication resulting in high-volume production at low cost. This is a key enabling factor for bringing photonics to a range of technology areas where the costs of implementation using traditional photonic elements such as those used for the telecommunications industry would be prohibitive. Silicon does however have a number of shortcomings as a photonic material. In its basic form it is not an ideal material in which to produce light sources, optical modulators or photodetectors for example. A wealth of research effort from both academia and industry in recent years has fueled the demonstration of multiple solutions to these and other problems, and as time progresses new approaches are increasingly being conceived. It is clear that silicon photonics has a bright future. However, with a growing number of approaches available, what will the silicon photonic integrated circuit of the future look like? This roadmap on silicon photonics delves into the different technology and application areas of the field giving an insight into the state-of-the-art as well as current and future challenges faced by researchers worldwide. Contributions authored by experts from both industry and academia provide an overview and outlook for the silicon waveguide platform, optical sources, optical modulators, photodetectors, integration approaches, packaging, applications of silicon photonics and approaches required to satisfy applications at mid-infrared wavelengths. Advances in science and technology required to meet challenges faced by the field in each of these areas are also addressed together with predictions of where the field is destined to reach.

939 citations

Journal ArticleDOI
30 Aug 2018-Nature
TL;DR: How optical metamaterials are expected to enhance the performance of the next generation of integrated photonic devices is reviewed, and some of the challenges encountered in the transition from concept demonstration to viable technology are explored.
Abstract: In the late nineteenth century, Heinrich Hertz demonstrated that the electromagnetic properties of materials are intimately related to their structure at the subwavelength scale by using wire grids with centimetre spacing to manipulate metre-long radio waves. More recently, the availability of nanometre-scale fabrication techniques has inspired scientists to investigate subwavelength-structured metamaterials with engineered optical properties at much shorter wavelengths, in the infrared and visible regions of the spectrum. Here we review how optical metamaterials are expected to enhance the performance of the next generation of integrated photonic devices, and explore some of the challenges encountered in the transition from concept demonstration to viable technology.

585 citations

Journal ArticleDOI
TL;DR: Sub-wavelength structures with a subwavelength pitch have been known since Hertz conducted his first experiments on the polarization of electromagnetic waves as discussed by the authors, and their applications include anti-reflective coatings, polarization rotators, high-efficiency fiber-chip cou-plers, spectrometers, highreflectivity mirrors, athermal waveg- uides, multimode interference couplers.
Abstract: Periodic structures with a sub-wavelength pitch have been known since Hertz conducted his first experiments on the polarization of electromagnetic waves. While the use of these structures in waveguide optics was proposed in the 1990s, it has been with the more recent developments of silicon photonics and high-precision lithography techniques that sub-wavelength structures have found widespread application in the field of pho- tonics. This review first provides an introduction to the physics of sub-wavelength structures. An overview of the applications of sub-wavelength structures is then given including: anti-reflective coatings, polarization rotators, high-efficiency fiber-chip cou- plers, spectrometers, high-reflectivity mirrors, athermal waveg- uides, multimode interference couplers, and dispersion engi- neered, ultra-broadband waveguide couplers among others. Particular attention is paid to providing insight into the design strategies for these devices. The concluding remarks provide an outlook on the future development of sub-wavelength structures and their impact in photonics.

496 citations

Journal ArticleDOI
TL;DR: Experimental measurements indicate a propagation loss as low as 2.1 dB/cm for subwavelength grating waveguide with negligible polarization and wavelength dependent loss, which compares favourably to conventional microphotonic silicon waveguides.
Abstract: We report on the experimental demonstration and analysis of a new waveguide principle using subwavelength gratings. Unlike other periodic waveguides such as line-defects in a 2D photonic crystal lattice, a subwavelength grating waveguide confines the light as a conventional index-guided structure and does not exhibit optically resonant behaviour. Subwavelength grating waveguides in silicon-on-insulator are fabricated with a single etch step and allow for flexible control of the effective refractive index of the waveguide core simply by lithographic patterning. Experimental measurements indicate a propagation loss as low as 2.1 dB/cm for subwavelength grating waveguides with negligible polarization and wavelength dependent loss, which compares favourably to conventional microphotonic silicon waveguides. The measured group index is nearly constant n(g) ~1.5 over a wavelength range exceeding the telecom C-band.

288 citations

Journal ArticleDOI
TL;DR: Two experimental examples of refractive index engineering are demonstrated, namely, a microphotonic fiber-chip coupler with a coupling loss as small as -0.9dB and minimal wavelength dependence and a planar waveguide multiplexer with SWG nanostructure, which acts as a slab waveguide for light diffracted by the grating, while at the same time acting as a lateral cladding for the strip waveguide.
Abstract: We use subwavelength gratings (SWGs) to engineer the refractive index in microphotonic waveguides, including practical components such as input couplers and multiplexer circuits. This technique allows for direct control of the mode confinement by changing the refractive index of a waveguide core over a range as broad as 1.6–3.5 by lithographic patterning. We demonstrate two experimental examples of refractive index engineering, namely, a microphotonic fiber-chip coupler with a coupling loss as small as −0.9dB and minimal wavelength dependence and a planar waveguide multiplexer with SWG nanostructure, which acts as a slab waveguide for light diffracted by the grating, while at the same time acting as a lateral cladding for the strip waveguide. This yields an operation bandwidth of 170nm for a device size of only ~160μm×100μm.

285 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of the current state-of-the-art in silicon nanophotonic ring resonators is presented in this paper, where the basic theory of ring resonance is discussed and applied to the peculiarities of submicron silicon photonic wire waveguides: the small dimensions and tight bend radii, sensitivity to perturbations and the boundary conditions of the fabrication processes.
Abstract: An overview is presented of the current state-of-the-art in silicon nanophotonic ring resonators. Basic theory of ring resonators is discussed, and applied to the peculiarities of submicron silicon photonic wire waveguides: the small dimensions and tight bend radii, sensitivity to perturbations and the boundary conditions of the fabrication processes. Theory is compared to quantitative measurements. Finally, several of the more promising applications of silicon ring resonators are discussed: filters and optical delay lines, label-free biosensors, and active rings for efficient modulators and even light sources.

1,989 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide an overview and outlook for the silicon waveguide platform, optical sources, optical modulators, photodetectors, integration approaches, packaging, applications of silicon photonics and approaches required to satisfy applications at mid-infrared wavelengths.
Abstract: Silicon photonics research can be dated back to the 1980s. However, the previous decade has witnessed an explosive growth in the field. Silicon photonics is a disruptive technology that is poised to revolutionize a number of application areas, for example, data centers, high-performance computing and sensing. The key driving force behind silicon photonics is the ability to use CMOS-like fabrication resulting in high-volume production at low cost. This is a key enabling factor for bringing photonics to a range of technology areas where the costs of implementation using traditional photonic elements such as those used for the telecommunications industry would be prohibitive. Silicon does however have a number of shortcomings as a photonic material. In its basic form it is not an ideal material in which to produce light sources, optical modulators or photodetectors for example. A wealth of research effort from both academia and industry in recent years has fueled the demonstration of multiple solutions to these and other problems, and as time progresses new approaches are increasingly being conceived. It is clear that silicon photonics has a bright future. However, with a growing number of approaches available, what will the silicon photonic integrated circuit of the future look like? This roadmap on silicon photonics delves into the different technology and application areas of the field giving an insight into the state-of-the-art as well as current and future challenges faced by researchers worldwide. Contributions authored by experts from both industry and academia provide an overview and outlook for the silicon waveguide platform, optical sources, optical modulators, photodetectors, integration approaches, packaging, applications of silicon photonics and approaches required to satisfy applications at mid-infrared wavelengths. Advances in science and technology required to meet challenges faced by the field in each of these areas are also addressed together with predictions of where the field is destined to reach.

939 citations

Journal ArticleDOI
TL;DR: In this paper, a review of recent progress on metamaterial-inspired silicon nanostructures, including Mie-resonant and off-Resonant regimes, is presented.
Abstract: Applying metamaterial concepts to dielectric systems offers low losses compared with metallic structures. Here, silicon-based metamaterial and nanophotonic advances are reviewed. The prospect of creating metamaterials with optical properties greatly exceeding the parameter space accessible with natural materials has been inspiring intense research efforts in nanophotonics for more than a decade. Following an era of plasmonic metamaterials, low-loss dielectric nanostructures have recently moved into the focus of metamaterial-related research. This development was mainly triggered by the experimental observation of electric and magnetic multipolar Mie-type resonances in high-refractive-index dielectric nanoparticles. Silicon in particular has emerged as a popular material choice, due to not only its high refractive index and very low absorption losses in the telecom spectral range, but also its paramount technological relevance. This Review overviews recent progress on metamaterial-inspired silicon nanostructures, including Mie-resonant and off-resonant regimes.

656 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the state of the field of trapped ion quantum computing and discuss what is being done, and what may be required, to increase the scale of trapped ions quantum computers while mitigating decoherence and control errors.
Abstract: Trapped ions are among the most promising systems for practical quantum computing (QC). The basic requirements for universal QC have all been demonstrated with ions, and quantum algorithms using few-ion-qubit systems have been implemented. We review the state of the field, covering the basics of how trapped ions are used for QC and their strengths and limitations as qubits. In addition, we discuss what is being done, and what may be required, to increase the scale of trapped ion quantum computers while mitigating decoherence and control errors. Finally, we explore the outlook for trapped-ion QC. In particular, we discuss near-term applications, considerations impacting the design of future systems of trapped ions, and experiments and demonstrations that may further inform these considerations.

650 citations

Journal ArticleDOI
30 Aug 2018-Nature
TL;DR: How optical metamaterials are expected to enhance the performance of the next generation of integrated photonic devices is reviewed, and some of the challenges encountered in the transition from concept demonstration to viable technology are explored.
Abstract: In the late nineteenth century, Heinrich Hertz demonstrated that the electromagnetic properties of materials are intimately related to their structure at the subwavelength scale by using wire grids with centimetre spacing to manipulate metre-long radio waves. More recently, the availability of nanometre-scale fabrication techniques has inspired scientists to investigate subwavelength-structured metamaterials with engineered optical properties at much shorter wavelengths, in the infrared and visible regions of the spectrum. Here we review how optical metamaterials are expected to enhance the performance of the next generation of integrated photonic devices, and explore some of the challenges encountered in the transition from concept demonstration to viable technology.

585 citations