scispace - formally typeset
J

Jens K. Nørskov

Researcher at Technical University of Denmark

Publications -  723
Citations -  181092

Jens K. Nørskov is an academic researcher from Technical University of Denmark. The author has contributed to research in topics: Catalysis & Density functional theory. The author has an hindex of 184, co-authored 706 publications receiving 146151 citations. Previous affiliations of Jens K. Nørskov include Aarhus University & Fritz Haber Institute of the Max Planck Society.

Papers
More filters
Journal ArticleDOI

Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode

TL;DR: In this paper, the stability of reaction intermediates of electrochemical processes on the basis of electronic structure calculations was analyzed and a detailed description of the free energy landscape of the electrochemical oxygen reduction reaction over Pt(111) as a function of applied bias was presented.
Journal ArticleDOI

Combining theory and experiment in electrocatalysis: Insights into materials design

TL;DR: A unified theoretical framework highlights the need for catalyst design strategies that selectively stabilize distinct reaction intermediates relative to each other, and opens up opportunities and approaches to develop higher-performance electrocatalysts for a wide range of reactions.
Journal ArticleDOI

Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals

TL;DR: In this paper, a simple formulation of a generalized gradient approximation for the exchange and correlation energy of electrons has been proposed by Perdew, Burke, and Ernzerhof (PBE), which improves the chemisorption energy of atoms and molecules on transition-metal surfaces.
Journal ArticleDOI

Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen Evolution

TL;DR: The ability of different metal surfaces and of the enzymes nitrogenase and hydrogenase to catalyze the hydrogen evolution reaction is analyzed and a necessary criterion for high catalytic activity is found: that the binding free energy of atomic hydrogen to the catalyst is close to zero.
Journal ArticleDOI

Computational high-throughput screening of electrocatalytic materials for hydrogen evolution

TL;DR: A density functional theory-based, high-throughput screening scheme that successfully uses these strategies to identify a new electrocatalyst for the hydrogen evolution reaction (HER), which is found to have a predicted activity comparable to, or even better than, pure Pt, the archetypical HER catalyst.