scispace - formally typeset
Search or ask a question
Author

Jens Ledet Jensen

Other affiliations: Aarhus University Hospital
Bio: Jens Ledet Jensen is an academic researcher from Aarhus University. The author has contributed to research in topics: Likelihood-ratio test & Markov chain Monte Carlo. The author has an hindex of 35, co-authored 110 publications receiving 10118 citations. Previous affiliations of Jens Ledet Jensen include Aarhus University Hospital.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel, innovative, and robust strategy to identify stably expressed genes among a set of candidate normalization genes, rooted in a mathematical model of gene expression, that provides a direct measure for the estimated expression variation, enabling the user to evaluate the systematic error introduced when using the gene.
Abstract: Accurate normalization is an absolute prerequisite for correct measurement of gene expression. For quantitative real-time reverse transcription-PCR (RT-PCR), the most commonly used normalization strategy involves standardization to a single constitutively expressed control gene. However, in recent years, it has become clear that no single gene is constitutively expressed in all cell types and under all experimental conditions, implying that the expression stability of the intended control gene has to be verified before each experiment. We outline a novel, innovative, and robust strategy to identify stably expressed genes among a set of candidate normalization genes. The strategy is rooted in a mathematical model of gene expression that enables estimation not only of the overall variation of the candidate normalization genes but also of the variation between sample subgroups of the sample set. Notably, the strategy provides a direct measure for the estimated expression variation, enabling the user to evaluate the systematic error introduced when using the gene. In a side-by-side comparison with a previously published strategy, our model-based approach performed in a more robust manner and showed less sensitivity toward coregulation of the candidate normalization genes. We used the model-based strategy to identify genes suited to normalize quantitative RT-PCR data from colon cancer and bladder cancer. These genes are UBC, GAPD, and TPT1 for the colon and HSPCB, TEGT, and ATP5B for the bladder. The presented strategy can be applied to evaluate the suitability of any normalization gene candidate in any kind of experimental design and should allow more reliable normalization of RT-PCR data.

6,007 citations

Journal ArticleDOI
TL;DR: The identification of clinically relevant subclasses of bladder carcinoma using expression microarray analysis of 40 well characterized bladder tumors was reported, with gene expression profiles characterizing each stage and subtype identified their biological properties, producing new potential targets for therapy.
Abstract: Bladder cancer is a common malignant disease characterized by frequent recurrences. The stage of disease at diagnosis and the presence of surrounding carcinoma in situ are important in determining the disease course of an affected individual. Despite considerable effort, no accepted immunohistological or molecular markers have been identified to define clinically relevant subsets of bladder cancer. Here we report the identification of clinically relevant subclasses of bladder carcinoma using expression microarray analysis of 40 well characterized bladder tumors. Hierarchical cluster analysis identified three major stages, Ta, T1 and T2-4, with the Ta tumors further classified into subgroups. We built a 32-gene molecular classifier using a cross-validation approach that was able to classify benign and muscle-invasive tumors with close correlation to pathological staging in an independent test set of 68 tumors. The classifier provided new predictive information on disease progression in Ta tumors compared with conventional staging (P < 0.005). To delineate non-recurring Ta tumors from frequently recurring Ta tumors, we analyzed expression patterns in 31 tumors by applying a supervised learning classification methodology, which classified 75% of the samples correctly (P < 0.006). Furthermore, gene expression profiles characterizing each stage and subtype identified their biological properties, producing new potential targets for therapy.

484 citations

Journal ArticleDOI
TL;DR: Examination of gene expression patterns in superficial transitional cell carcinoma with surrounding CIS, without surrounding CIS lesions, and in muscle invasive carcinomas revealed that a CIS gene expression signature is present not only in CIS biopsies but also in sT CC, mTCC, and, remarkably, in histologically normal urothelium from bladders with CIS.
Abstract: The presence of carcinoma in situ (CIS) lesions in the urinary bladder is associated with a high risk of disease progression to a muscle invasive stage. In this study, we used microarray expression profiling to examine the gene expression patterns in superficial transitional cell carcinoma (sTCC) with surrounding CIS (13 patients), without surrounding CIS lesions (15 patients), and in muscle invasive carcinomas (mTCC; 13 patients). Hierarchical cluster analysis separated the sTCC samples according to the presence or absence of CIS in the surrounding urothelium. We identified a few gene clusters that contained genes with similar expression levels in transitional cell carcinoma (TCC) with surrounding CIS and invasive TCC. However, no close relationship between TCC with adjacent CIS and invasive TCC was observed using hierarchical cluster analysis. Expression profiling of a series of biopsies from normal urothelium and urothelium with CIS lesions from the same urinary bladder revealed that the gene expression found in sTCC with surrounding CIS is found also in CIS biopsies as well as in histologically normal samples adjacent to the CIS lesions. Furthermore, we also identified similar gene expression changes in mTCC samples. We used a supervised learning approach to build a 16-gene molecular CIS classifier. The classifier was able to classify sTCC samples according to the presence or absence of surrounding CIS with a high accuracy. This study demonstrates that a CIS gene expression signature is present not only in CIS biopsies but also in sTCC, mTCC, and, remarkably, in histologically normal urothelium from bladders with CIS. Identification of this expression signature could provide guidance for the selection of therapy and follow-up regimen in patients with early stage bladder cancer.

429 citations

Journal ArticleDOI
TL;DR: The findings reported here indicate that several miRNAs are differentially regulated in bladder cancer and may form a basis for clinical development of new biomarkers for bladder cancer.
Abstract: microRNAs (miRNA) are involved in cancer development and progression, acting as tumor suppressors or oncogenes. Here, we profiled the expression of 290 unique human miRNAs in 11 normal and 106 bladder tumor samples using spotted locked nucleic acid–based oligonucleotide microarrays. We identified several differentially expressed miRNAs between normal urothelium and cancer and between the different disease stages. miR-145 was found to be the most down-regulated in cancer compared with normal, and miR-21 was the most up-regulated in cancer. Furthermore, we identified miRNAs that significantly correlated to the presence of concomitant carcinoma in situ. We identified several miRNAs with prognostic potential for predicting disease progression (e.g., miR-129, miR-133b, and miR-518c*). We localized the expression of miR-145, miR-21, and miR-129 to urothelium by in situ hybridization. We then focused on miR-129 that exerted significant growth inhibition and induced cell death upon transfection with a miR-129 precursor in bladder carcinoma cell lines T24 and SW780 cells. Microarray analysis of T24 cells after transfection showed significant miR-129 target down-regulation (P = 0.0002) and pathway analysis indicated that targets were involved in cell death processes. By analyzing gene expression data from clinical tumor samples, we identified significant expression changes of target mRNA molecules related to the miRNA expression. Using luciferase assays, we documented a direct link between miR-129 and the two putative targets GALNT1 and SOX4. The findings reported here indicate that several miRNAs are differentially regulated in bladder cancer and may form a basis for clinical development of new biomarkers for bladder cancer. [Cancer Res 2009;69(11):4851–60]

365 citations

Book
01 Jan 1993
TL;DR: A tutorial on queuing networks and a brief guide to the literature for statisticians and probabilists on Random graphical networks.
Abstract: Mathematical methods of neurocomputing- Statistical aspects of neural networks- Statistical aspects of chaos: a review- Chaotic dynamical systems with a View towards statistics: a review- A tutorial on queuing networks- River networks: a brief guide to the literature for statisticians and probabilists- Random graphical networks

198 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines target the reliability of results to help ensure the integrity of the scientific literature, promote consistency between laboratories, and increase experimental transparency.
Abstract: Background: Currently, a lack of consensus exists on how best to perform and interpret quantitative real-time PCR (qPCR) experiments. The problem is exacerbated by a lack of sufficient experimental detail in many publications, which impedes a reader’s ability to evaluate critically the quality of the results presented or to repeat the experiments. Content: The Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines target the reliability of results to help ensure the integrity of the scientific literature, promote consistency between laboratories, and increase experimental transparency. MIQE is a set of guidelines that describe the minimum information necessary for evaluating qPCR experiments. Included is a checklist to accompany the initial submission of a manuscript to the publisher. By providing all relevant experimental conditions and assay characteristics, reviewers can assess the validity of the protocols used. Full disclosure of all reagents, sequences, and analysis methods is necessary to enable other investigators to reproduce results. MIQE details should be published either in abbreviated form or as an online supplement. Summary: Following these guidelines will encourage better experimental practice, allowing more reliable and unequivocal interpretation of qPCR results.

12,469 citations

Journal ArticleDOI
TL;DR: BEAST is a fast, flexible software architecture for Bayesian analysis of molecular sequences related by an evolutionary tree that provides models for DNA and protein sequence evolution, highly parametric coalescent analysis, relaxed clock phylogenetics, non-contemporaneous sequence data, statistical alignment and a wide range of options for prior distributions.
Abstract: The evolutionary analysis of molecular sequence variation is a statistical enterprise. This is reflected in the increased use of probabilistic models for phylogenetic inference, multiple sequence alignment, and molecular population genetics. Here we present BEAST: a fast, flexible software architecture for Bayesian analysis of molecular sequences related by an evolutionary tree. A large number of popular stochastic models of sequence evolution are provided and tree-based models suitable for both within- and between-species sequence data are implemented. BEAST version 1.4.6 consists of 81000 lines of Java source code, 779 classes and 81 packages. It provides models for DNA and protein sequence evolution, highly parametric coalescent analysis, relaxed clock phylogenetics, non-contemporaneous sequence data, statistical alignment and a wide range of options for prior distributions. BEAST source code is object-oriented, modular in design and freely available at http://beast-mcmc.googlecode.com/ under the GNU LGPL license. BEAST is a powerful and flexible evolutionary analysis package for molecular sequence variation. It also provides a resource for the further development of new models and statistical methods of evolutionary analysis.

11,916 citations

Journal ArticleDOI
TL;DR: A novel, innovative, and robust strategy to identify stably expressed genes among a set of candidate normalization genes, rooted in a mathematical model of gene expression, that provides a direct measure for the estimated expression variation, enabling the user to evaluate the systematic error introduced when using the gene.
Abstract: Accurate normalization is an absolute prerequisite for correct measurement of gene expression. For quantitative real-time reverse transcription-PCR (RT-PCR), the most commonly used normalization strategy involves standardization to a single constitutively expressed control gene. However, in recent years, it has become clear that no single gene is constitutively expressed in all cell types and under all experimental conditions, implying that the expression stability of the intended control gene has to be verified before each experiment. We outline a novel, innovative, and robust strategy to identify stably expressed genes among a set of candidate normalization genes. The strategy is rooted in a mathematical model of gene expression that enables estimation not only of the overall variation of the candidate normalization genes but also of the variation between sample subgroups of the sample set. Notably, the strategy provides a direct measure for the estimated expression variation, enabling the user to evaluate the systematic error introduced when using the gene. In a side-by-side comparison with a previously published strategy, our model-based approach performed in a more robust manner and showed less sensitivity toward coregulation of the candidate normalization genes. We used the model-based strategy to identify genes suited to normalize quantitative RT-PCR data from colon cancer and bladder cancer. These genes are UBC, GAPD, and TPT1 for the colon and HSPCB, TEGT, and ATP5B for the bladder. The presented strategy can be applied to evaluate the suitability of any normalization gene candidate in any kind of experimental design and should allow more reliable normalization of RT-PCR data.

6,007 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

Journal ArticleDOI
TL;DR: A new method is proposed which attempts to keep the sensitivity benefits of cluster-based thresholding (and indeed the general concept of "clusters" of signal), while avoiding (or at least minimising) these problems, and is referred to as "threshold-free cluster enhancement" (TFCE).

4,466 citations