scispace - formally typeset
Search or ask a question
Author

Jens Limpert

Bio: Jens Limpert is an academic researcher from University of Jena. The author has contributed to research in topics: Fiber laser & Laser. The author has an hindex of 78, co-authored 955 publications receiving 21885 citations. Previous affiliations of Jens Limpert include Helmholtz Institute Jena & Centre national de la recherche scientifique.


Papers
More filters
Journal ArticleDOI
TL;DR: An overview of the state of the art in the field can be found in this paper, where the authors discuss present challenges and the future outlook of high-power fiber laser applications.
Abstract: High-power fibre lasers are in demand for industrial, defence and scientific applications. This review provides an overview of the present state of the art in the field and discusses present challenges and the future outlook.

781 citations

Journal ArticleDOI
TL;DR: This Letter reports on the generation of 830 W compressed average power from a femtosecond fiber chirped pulse amplification (CPA) system and discusses further a scaling potential toward and beyond the kilowatt level by overcoming the current scaling limitations imposed by the transversal spatial hole burning.
Abstract: In this Letter we report on the generation of 830 W compressed average power from a femtosecond fiber chirped pulse amplification (CPA) system In the high-power operation we achieved a compressor throughput of about 90% by using high-efficiency dielectric gratings The output pulse duration of 640 fs at 78 MHz repetition rate results in a peak power of 12 MW Additionally, we discuss further a scaling potential toward and beyond the kilowatt level by overcoming the current scaling limitations imposed by the transversal spatial hole burning

559 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a comprehensive update of the current status of ultra-high-power lasers and demonstrate how the technology has developed, and what technologies are to be deployed to get to these new regimes, and some critical issues facing their development.
Abstract: In the 2015 review paper 'Petawatt Class Lasers Worldwide' a comprehensive overview of the current status of highpower facilities of >200 TW was presented. This was largely based on facility specifications, with some description of their uses, for instance in fundamental ultra-high-intensity interactions, secondary source generation, and inertial confinement fusion (ICF). With the 2018 Nobel Prize in Physics being awarded to Professors Donna Strickland and Gerard Mourou for the development of the technique of chirped pulse amplification (CPA), which made these lasers possible, we celebrate by providing a comprehensive update of the current status of ultra-high-power lasers and demonstrate how the technology has developed. We are now in the era of multi-petawatt facilities coming online, with 100 PW lasers being proposed and even under construction. In addition to this there is a pull towards development of industrial and multidisciplinary applications, which demands much higher repetition rates, delivering high-average powers with higher efficiencies and the use of alternative wavelengths: mid-IR facilities. So apart from a comprehensive update of the current global status, we want to look at what technologies are to be deployed to get to these new regimes, and some of the critical issues facing their development.

559 citations

Journal ArticleDOI
TL;DR: The observation and experimental characterization of a threshold-like onset of mode instabilities, i.e. an apparently random relative power content change of different transverse modes, occurring in originally single-mode high-power fiber amplifiers is reported.
Abstract: We report on the observation and experimental characterization of a threshold-like onset of mode instabilities, i.e. an apparently random relative power content change of different transverse modes, occurring in originally single-mode high-power fiber amplifiers. Although the physical origin of this effect is not yet fully understood, we discuss possible explanations. Accordingly, several solutions are proposed in this paper to raise the threshold of this effect.

540 citations

Journal ArticleDOI
TL;DR: The robust single-transverse-mode propagation in a passive 100 microm core fiber with a similar design reveals the potential of extended large-mode-area photonic crystal fibers.
Abstract: We report on an ytterbium-doped photonic crystal fiber with a core diameter of 60 μm and mode-field-area of ~2000 μm2 of the emitted fundamental mode. Together with the short absorption length of 0.5 m this fiber possesses a record low nonlinearity which makes this fiber predestinated for the amplification of short laser pulses to very high peak powers. In a first continuous-wave experiment a power of 320 W has been extracted corresponding to 550 W per meter. To our knowledge this represents the highest power per unit length ever reported for fiber lasers. Furthermore, the robust single-transverse-mode propagation in a passive 100 μm core fiber with a similar design reveals the potential of extended large-mode-area photonic crystal fibers.

358 citations


Cited by
More filters
Journal ArticleDOI
17 Jan 2003-Science
TL;DR: In this article, a periodic array of microscopic air holes that run along the entire fiber length are used to guide light by corralling it within a periodic arrays of microscopic holes.
Abstract: Photonic crystal fibers guide light by corralling it within a periodic array of microscopic air holes that run along the entire fiber length Largely through their ability to overcome the limitations of conventional fiber optics—for example, by permitting low-loss guidance of light in a hollow core—these fibers are proving to have a multitude of important technological and scientific applications spanning many disciplines The result has been a renaissance of interest in optical fibers and their uses

3,918 citations

Journal ArticleDOI
04 Oct 2006
TL;DR: In this paper, a review of numerical and experimental studies of supercontinuum generation in photonic crystal fiber is presented over the full range of experimentally reported parameters, from the femtosecond to the continuous-wave regime.
Abstract: A topical review of numerical and experimental studies of supercontinuum generation in photonic crystal fiber is presented over the full range of experimentally reported parameters, from the femtosecond to the continuous-wave regime. Results from numerical simulations are used to discuss the temporal and spectral characteristics of the supercontinuum, and to interpret the physics of the underlying spectral broadening processes. Particular attention is given to the case of supercontinuum generation seeded by femtosecond pulses in the anomalous group velocity dispersion regime of photonic crystal fiber, where the processes of soliton fission, stimulated Raman scattering, and dispersive wave generation are reviewed in detail. The corresponding intensity and phase stability properties of the supercontinuum spectra generated under different conditions are also discussed.

3,361 citations

Proceedings Article
01 Jan 1999
TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Abstract: The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

2,722 citations

Journal ArticleDOI
TL;DR: In this article, the physical mechanisms and the main experimental parameters involved in femtosecond laser micromachining of transparent materials, and important emerging applications of the technology are described.
Abstract: Femtosecond laser micromachining can be used either to remove materials or to change a material's properties, and can be applied to both absorptive and transparent substances. Over the past decade, this technique has been used in a broad range of applications, from waveguide fabrication to cell ablation. This review describes the physical mechanisms and the main experimental parameters involved in the femtosecond laser micromachining of transparent materials, and important emerging applications of the technology. Interactions between laser and matter are fascinating and have found a wide range of applications. This article gives an overview of the fundamental physical mechanisms in the processing of transparent materials using ultrafast lasers, as well as important emerging applications of the technology.

2,533 citations

Journal ArticleDOI
TL;DR: This paper reviews the current state of the art in terms of continuous-wave and pulsed performance of ytterbium-doped fiber lasers, the current fiber gain medium of choice, and by far the most developed in Terms of high-power performance.
Abstract: The rise in output power from rare-earth-doped fiber sources over the past decade, via the use of cladding-pumped fiber architectures, has been dramatic, leading to a range of fiber-based devices with outstanding performance in terms of output power, beam quality, overall efficiency, and flexibility with regard to operating wavelength and radiation format. This success in the high-power arena is largely due to the fiber’s geometry, which provides considerable resilience to the effects of heat generation in the core, and facilitates efficient conversion from relatively low-brightness diode pump radiation to high-brightness laser output. In this paper we review the current state of the art in terms of continuous-wave and pulsed performance of ytterbium-doped fiber lasers, the current fiber gain medium of choice, and by far the most developed in terms of high-power performance. We then review the current status and challenges of extending the technology to other rare-earth dopants and associated wavelengths of operation. Throughout we identify the key factors currently limiting fiber laser performance in different operating regimes—in particular thermal management, optical nonlinearity, and damage. Finally, we speculate as to the likely developments in pump laser technology, fiber design and fabrication, architectural approaches, and functionality that lie ahead in the coming decade and the implications they have on fiber laser performance and industrial/scientific adoption.

1,689 citations