scispace - formally typeset
Search or ask a question
Author

Jens Meyer

Bio: Jens Meyer is an academic researcher from Philips. The author has contributed to research in topics: OLED & Organic electronics. The author has an hindex of 34, co-authored 63 publications receiving 8540 citations. Previous affiliations of Jens Meyer include Princeton University & Karlsruhe Institute of Technology.


Papers
More filters
Journal ArticleDOI
20 Apr 2012-Science
TL;DR: It is shown that surface modifiers based on polymers containing simple aliphatic amine groups substantially reduce the work function of conductors including metals, transparent conductive metal oxides, conducting polymers, and graphene.
Abstract: Organic and printed electronics technologies require conductors with a work function that is sufficiently low to facilitate the transport of electrons in and out of various optoelectronic devices. We show that surface modifiers based on polymers containing simple aliphatic amine groups substantially reduce the work function of conductors including metals, transparent conductive metal oxides, conducting polymers, and graphene. The reduction arises from physisorption of the neutral polymer, which turns the modified conductors into efficient electron-selective electrodes in organic optoelectronic devices. These polymer surface modifiers are processed in air from solution, providing an appealing alternative to chemically reactive low–work function metals. Their use can pave the way to simplified manufacturing of low-cost and large-area organic electronic technologies.

1,870 citations

Journal ArticleDOI
TL;DR: An overview of TMO-based device architectures ranging from transparent OLEDs to tandem OPV cells is given, and various TMO film deposition methods are reviewed, addressing vacuum evaporation and recent approaches for solution-based processing.
Abstract: During the last few years, transition metal oxides (TMO) such as molybdenum tri-oxide (MoO3), vanadium pent-oxide (V2O5) or tungsten tri-oxide (WO3) have been extensively studied because of their exceptional electronic properties for charge injection and extraction in organic electronic devices. These unique properties have led to the performance enhancement of several types of devices and to a variety of novel applications. TMOs have been used to realize efficient and long-term stable p-type doping of wide band gap organic materials, charge-generation junctions for stacked organic light emitting diodes (OLED), sputtering buffer layers for semi-transparent devices, and organic photovoltaic (OPV) cells with improved charge extraction, enhanced power conversion efficiency and substantially improved long term stability. Energetics in general play a key role in advancing device structure and performance in organic electronics; however, the literature provides a very inconsistent picture of the electronic structure of TMOs and the resulting interpretation of their role as functional constituents in organic electronics. With this review we intend to clarify some of the existing misconceptions. An overview of TMO-based device architectures ranging from transparent OLEDs to tandem OPV cells is also given. Various TMO film deposition methods are reviewed, addressing vacuum evaporation and recent approaches for solution-based processing. The specific properties of the resulting materials and their role as functional layers in organic devices are discussed.

1,023 citations

Journal ArticleDOI
TL;DR: In this paper, the electron affinity and ionization energy of vacuum-deposited molybdenum trioxide (MoO3) and of a typical MoO3/hole transport material (HTM) interface were determined via ultraviolet and inverse photoelectron spectroscopy.
Abstract: The electronic structures of vacuum-deposited molybdenum trioxide (MoO3) and of a typical MoO3/hole transport material (HTM) interface are determined via ultraviolet and inverse photoelectron spectroscopy. Electron affinity and ionization energy of MoO3 are found to be 6.7 and 9.68 eV, more than 4 eV larger than generally assumed, leading to a revised interpretation of the role of MoO3 in hole injection in organic devices. The MoO3 films are strongly n-type. The electronic structure of the oxide/HTM interface shows that hole injection proceeds via electron extraction from the HTM highest occupied molecular orbital through the low-lying conduction band of MoO3.

640 citations

Journal ArticleDOI
TL;DR: In this article, a study on p-doping of organic wide band gap materials with Molybdenum trioxide using current transport measurements, ultraviolet photo-electron spectroscopy and inverse photo electrophoresis was presented.

422 citations

Journal ArticleDOI
TL;DR: MoO3 films spin-coated from a suspension of nanoparticles, which offers energetic properties nearly identical to those of thermally evaporated MoO2 films, are reported.
Abstract: MoO3 films spin-coated from a suspension of nanoparticles, which offers energetic properties nearly identical to those of thermally evaporated MoO3 films, are reported. It is demonstrated that our solution-based MoO3 acts as a very efficient hole-injection layer for organic devices.

332 citations


Cited by
More filters
Journal ArticleDOI
01 Aug 2014-Science
TL;DR: Perovskite films received a boost in photovoltaic efficiency through controlled formation of charge-generating films and improved current transfer to the electrodes and low-temperature processing steps allowed the use of materials that draw current out of the perovskites layer more efficiently.
Abstract: Advancing perovskite solar cell technologies toward their theoretical power conversion efficiency (PCE) requires delicate control over the carrier dynamics throughout the entire device. By controlling the formation of the perovskite layer and careful choices of other materials, we suppressed carrier recombination in the absorber, facilitated carrier injection into the carrier transport layers, and maintained good carrier extraction at the electrodes. When measured via reverse bias scan, cell PCE is typically boosted to 16.6% on average, with the highest efficiency of ~19.3% in a planar geometry without antireflective coating. The fabrication of our perovskite solar cells was conducted in air and from solution at low temperatures, which should simplify manufacturing of large-area perovskite devices that are inexpensive and perform at high levels.

5,789 citations

Journal ArticleDOI

4,756 citations

Journal ArticleDOI
TL;DR: In this article, a review summarizes recent progress in the development of polymer solar cells and provides a synopsis of major achievements in the field over the past few years, while potential future developments and the applications of this technology are also briefly discussed.
Abstract: This Review summarizes recent progress in the development of polymer solar cells. It covers the scientific origins and basic properties of polymer solar cell technology, material requirements and device operation mechanisms, while also providing a synopsis of major achievements in the field over the past few years. Potential future developments and the applications of this technology are also briefly discussed.

3,832 citations

Journal ArticleDOI
TL;DR: A novel non-fullerene electron acceptor (ITIC) that overcomes some of the shortcomings of fullerene acceptors, for example, weak absorption in the visible spectral region and limited energy-level variability, is designed and synthesized.
Abstract: A novel non-fullerene electron acceptor (ITIC) that overcomes some of the shortcomings of fullerene acceptors, for example, weak absorption in the visible spectral region and limited energy-level variability, is designed and synthesized. Fullerene-free polymer solar cells (PSCs) based on the ITIC acceptor are demonstrated to exhibit power conversion effi ciencies of up to 6.8%, a record for fullerene-free PSCs.

3,048 citations

Journal ArticleDOI
TL;DR: The recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed andp-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed.
Abstract: Transparent electronics is today one of the most advanced topics for a wide range of device applications. The key components are wide bandgap semiconductors, where oxides of different origins play an important role, not only as passive component but also as active component, similar to what is observed in conventional semiconductors like silicon. Transparent electronics has gained special attention during the last few years and is today established as one of the most promising technologies for leading the next generation of flat panel display due to its excellent electronic performance. In this paper the recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed and p-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed. After a short introduction where the main advantages of these semiconductors are presented, as well as the industry expectations, the beautiful history of TFTs is revisited, including the main landmarks in the last 80 years, finishing by referring to some papers that have played an important role in shaping transparent electronics. Then, an overview is presented of state of the art n-type TFTs processed by physical vapour deposition methods, and finally one of the most exciting, promising, and low cost but powerful technologies is discussed: solution-processed oxide TFTs. Moreover, a more detailed focus analysis will be given concerning p-type oxide TFTs, mainly centred on two of the most promising semiconductor candidates: copper oxide and tin oxide. The most recent data related to the production of complementary metal oxide semiconductor (CMOS) devices based on n- and p-type oxide TFT is also be presented. The last topic of this review is devoted to some emerging applications, finalizing with the main conclusions. Related work that originated at CENIMAT|I3N during the last six years is included in more detail, which has led to the fabrication of high performance n- and p-type oxide transistors as well as the fabrication of CMOS devices with and on paper.

2,440 citations